
GRAPEVINE RECOGNITION ON
IMAGES

Author:

Yifei Wu

MSc-Student

Supervisor:

Dr. Tomáš Horváth

Head of Data Science Department

December 15, 2018. Budapest

Eötvös Loránd University

Faculty of Informatics, Computer Science

ABSTRACT

Grapevine pruning is a costly and tedious work in vineyard, thus it is necessary

to automatize this task with the help of computer vision. Although there are many

existing technologies for this purpose, they are either too complicated to implement or

highly demanding on the quality and content of the image itself. One of the issues in

automating grapevine pruning is the lack of larger benchmark datasets, i.e. images of

grapevines and their structure in an annotated form, which would facilitate the devel-

opment of machine learning-based solutions. This master thesis presents an approach

focusing on recognizing the structure of grapevines on images. The thesis contributes to

a pilot application, developed within the department of Data Science and Engineering,

with the input in the form of image files of grapevines and output in the form of a

structured language describing the structure of the grapevine.

i

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me the

possibility to complete this thesis. A special gratitude I give to my supervisor of this

thesis, Dr.Tomáš Horváth, whose contribution in wise suggestions and encouragement,

he and his PhD students helped me to collect the source images from vineyard several

times in the freezing winter, all of these helped me to coordinate my project especially

in writing this thesis.

Furthermore I would also like to acknowledge Dr.Dmitry Chetverikov who has

provided me huge help when I had difficulty on image processing; Mr.Ahmed Blej who

is my teammate of this project and helped me to gain the user input.

Last but not least, I would like to thank my family who provides me endless

care and love, also my manager at work who gives me so much understanding and

convenience.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Motivation . 1

1.2 Introduction of grapevine pruning . 2

1.3 Objective and preparation . 7

1.3.1 Objective . 7

1.3.2 Preparation . 7

1.4 Outline . 8

2 Relevant literature review 10

2.1 Existing technology . 10

2.1.1 Systematic solution . 10

2.1.2 Structure extraction on images 13

iii

2.2 Difficulties in our state . 16

3 Our approach 19

3.1 Overall process . 19

3.2 Tools we use . 23

3.2.1 Python . 23

3.2.2 OpenCV . 24

3.2.3 Numpy . 25

3.3 Concepts of visual information processing 26

3.4 Image processing and analysis . 28

3.4.1 Image scaling . 28

3.4.2 Bilateral Filter . 32

3.4.3 Region of interest . 36

3.4.4 Target object segmentation . 40

3.4.5 Morphological operation . 45

4 Conclusion 49

4.1 Result . 49

4.2 Future work . 50

Bibliography 51

iv

List of Figures

1.1 Grapevine anatomy . 3

1.2 Spur pruning example . 5

1.3 Pruning machine example . 6

1.4 Sample pictures . 8

2.1 Main components of the robot system presented in [1] 11

2.2 Flowchart of a proposed approach from [2] 13

2.3 One step of tracking scanning beam [3] 14

2.4 Pseudo nodes generated by intersection of branches 15

2.5 Thresholding result . 17

2.6 Canny edge detection result . 17

2.7 A grapevine skeleton example . 18

3.1 Flowchart of our approach . 20

3.2 Upload image . 21

v

3.3 Mark the trunk . 21

3.4 The selected pixels information of the trunk 22

3.5 All the branches get marked . 22

3.6 Different terms in visual information processing 27

3.7 Relations among different terms . 28

3.8 Example of resized image . 31

3.9 A classical illustration of image convolution 33

3.10 Comparison of two filtering . 35

3.11 Example of one marked cane from user 36

3.12 ROI for the marked cane . 37

3.13 Polyline on ROI of marked cane . 39

3.14 Mask and a better ROI . 39

3.15 HSV color model . 43

3.16 Two examples of extraction result . 45

3.17 Examples of morphological operation 47

vi

Chapter 1

Introduction

1.1 Motivation

In recent years, science and technology have been continuously improved, result in

people’s living standards have been improved as well, and the role of agricultural ma-

chinery automation in people’s lives has become increasingly important. Therefore, the

development of agricultural machinery automation has gradually become an important

symbol representing economic and social development of any country in the world.

The emergence of a large number of agricultural production machinery has effec-

tively solved the problem of insufficient food, while improving the efficiency of agri-

cultural production, it also effectively reduces the labor intensity of operators, so that

agricultural production can achieve rapid, stable and sustainable development. How-

ever, in today’s social and economic development, people have begun to put forward

higher requirements for the efficiency of agricultural machinery automation and the

quality of products, and also try to apply different technologies in more and more

fields. Therefore, the automation of agricultural machinery must continuously improve

the comfort and productivity of labor, so that it can effectively promote the continu-

1

ous development of agricultural production in the direction of high efficiency and high

precision.

As one of the most widely planted fruit in the world, grape is also the fruit with

the highest processing ratio, the longest industrial chain and the most products. Ac-

cording to the 2017 WORLD VITIVINICULTURE SITUATION REPORT from the

International Organization of Vine and Wine, the global surface area under vines is

7.5 million of hectares and grape production is 7.8 million of quintals in 2016. Around

75% of the world’s grapes are used for wine making, drying, and juice processing. In

addition, the grapes are rich in nutritional value, diverse in products, beautiful in ap-

pearance, and popular among consumers all over the world. It can be said that grape

is a very important member of the world fruit family, and the production and trade of

grapes have always been valued, thus any kind of study which could possibly benefit

the viticulture is meaningful.

1.2 Introduction of grapevine pruning

This thesis aims at grapevine pruning which is one of the critical activity in viti-

culture. For better explanation, please see the grapevine anatomy Figure 1.1 (picture

courtesy of Dave Johnson for Bay Area News Group). We can see composition of a

grapevine in the picture and also know what is the name of each part, since we will be

dealing with the grapevine pruning which usually happen in the winter, also known as

the dormant season for grapevines after harvest and leaf fall, there will not be canopy

composed by grape bunches and leaves, we can only focus on the trunk, cordons, canes,

shoots and buds.

• Trunk – It is the main steam, it’s permanent and supports the above-ground

vegetative (leaves and stems) and reproductive (flowers and fruits) structure of

2

Figure 1.1: Grapevine anatomy

the grapevine.

• Cordon - The cordon, or ”arms”, extend from the trunk and are the part where

additional arms and eventually leaves and grape clusters extend. The cordons are

usually trained along wires as part of a trellis system.

• Cane - The principal structure of concern in the dormant season, is simply a

mature, woody and one-year shoot after the leaves has fallen off.

• Shoots - They are green stems which develop from buds, and represent the primary

growth structure of grapevines. The shoots that arise from primary buds are

normally the fruit-producing shoots. The shoot consists of stems, leaves, tendrils

and fruits.

• Buds - A bud is a growing point that develops in the leaf axil, the area just above

3

the point of connection between the petiole and shoot. Bud is actually a highly

compressed shoot with all its parts, including cluster. In spring, the buds burst.

They become shoots bearing new leaves and bunches of grape flowers.

Why do we need to prune grapevine? And why it is considered as one of the critical

activity in viticulture? There are several reasons for grapevine pruning:

1. Keep the grapevine in shape. Grapevine belongs to liana, which means it needs

to climb by other additional support, and usually in the vineyard, grower needs

to train and make sure the grapevine keep similar shape year after year in order

to facilitate other operations in the vineyard such as harvest.

2. Keep the grapevine in good health. The excess branches would derive more

nutrients and cannot make full use of the nutrients, impeding the growth of other

branches. Also for the canopy management which means finding the balance in

enough foliage to facilitate photosynthesis without excessive shading that could

impede grape ripening or lead grape diseases.

3. Ensure the yield and improve the quality of grapes. Grapes are produced from

buds that will grow into shoots on 1-year old canes (the long stems or ”shoots”

after they’ve borne fruit for at least one year). The most fruitful canes will be

those that were exposed to light during the growing season. A given vine in a

given season can only produce a certain quantity of fruit. Its capacity to do so

is largely dependent on the amount of leaf area and photosynthetic activity. By

consistently limiting the number of shoots and leaves by dormant pruning, one is

also working to produce the maximum crop without delaying maturity year after

year.

4. Maintain a balance between vegetative growth and fruit production. Where a

vine is under pruned, means too many buds left, the vine will produce many

4

small clusters of small grapes that may fail to ripen properly. If the vine is over

pruned, means too few buds left, the yield will be low and the vegetative growth

excessive.

The grapevine pruning techniques vary from different varieties of grapevines and

different regions the grapevines grow. In general, there are two most common and basic

systems of grape pruning - cane pruning and spur pruning, see example in Figure 1.2

(picture courtesy of Eric Stafne, Mississippi State University) of spur pruning. In order

to control the number, position, and vitality of branches, as well as the yield and the

quality of the fruits, the operation of pruning is required to be conducted manually

by experienced operators. Usually, operators walk along the grapevines one by one,

and prune each grapevine with secateurs (a dedicated tool for pruning), they need to

observe and plan carefully, make proper decision by their experience and knowledge.

Such operation could take a group of operators few months to finish, that is simply

because nowadays the vineyards are considerably large and there are usually millions

of grapevines in the vineyard, even consider a smaller vineyard it might take a couple

of weeks to finish.

Figure 1.2: Spur pruning example

5

However, there are so-called semi-automatic pruning machines, see example in Fig-

ure 1.3, they are usually installed on standard tractors. Such mechanism can prune the

grapevine to a certain extent under the control of human, compare with the manual

grapevine pruning, it definitely relieves people from tedious physical work, but it is

just impersonal mechanism, it can only prune the grapevine roughly, it cannot perform

detailed pruning, the accuracy of the operation depends on the experiences and capa-

bility of the driver of this machine to a large extent. It indeed wins on the speed of the

process, but loses on the precision of the result when we compare it with the manual

work.

Figure 1.3: Pruning machine example

In practice, such mechanism often leads some stems or branches which need to be

pruned get remained while others which need to be remained get pruned, this could

seriously damage the grapevine and reduce the yield.

6

1.3 Objective and preparation

1.3.1 Objective

As mentioned above, grapevine pruning as a time-consuming and labor-intensive

work, is the last operation needs to be automated in the vineyard. But, to date,

grapevine pruning has not been totally automated due to the variations of grape vari-

eties and environment which make automation quite difficult. The cost of skilled hand

labour is rapidly increasing in any country, it is necessary to develop a more efficient

and economic way for grapevine pruning.

The main contradiction here is we would like to reach almost the same pruning ac-

curacy as the manual work does without any human get involved. Thanks to computer

vision and machine learning, it is possible to achieve our goal, because the knowledge of

how to properly prune grapevine can be learned by computer with the help of human

intervention and sophisticated algorithms nowadays. However, the objective of this

thesis is only about the image recognition of grapevine structure, which could be used

for future work.

1.3.2 Preparation

For the first step of our work, we need to gain as many grapevine images as we

can, thus we went to a vineyard located in Monor (a town in Pest county, southeast of

Budapest, Hungary). We got around 600 pictures of the grapevines in that vineyard

before the grower prune them in the winter, all these pictures were taken by a digi-

tal camera with tripod, and the horizontal distance between camera and grapevine is

approximately one meter. Each picture has 6000*4000 resolution, please see 9 sample

picture in Figure 1.4.

7

Figure 1.4: Sample pictures

1.4 Outline

The outline of this thesis can be summarized as following:

CHAPTER 1 briefly introduces what is grapevine pruning, the current situation

of grapevine pruning, explains the motivation and objective of this thesis, also indicates

the preparation we have done.

CHAPTER 2 makes a literature review of several relevant papers, also demon-

strates the latest technology in the scope of grapevine pruning, compares the advantages

and disadvantages of each approach, highlights the difficulties in our situation.

CHAPTER 3 presents a novel approach to gain grapevine images under any

kind of background, this approach mainly depends on the image processing and image

8

analysis techniques. Also expounds all the tools, theories and algorithms we have used

to process the image and get the structured representation of the grapevines on images.

CHAPTER 4, a summary of main achievements, contributions, conclusions and

future work of this thesis are presented. The defects of the approach in this thesis is

also addressed for further improvement.

9

Chapter 2

Relevant literature review

Since there is huge commercial potential in the field of autonomous grapevine

pruning, the research on this matter never stopped. Different people have proposed

different ideas and conducted different experiments, some of those ideas also have been

implemented to prototypes. In this chapter, we will review a few papers related to

autonomous grapevine pruning, demonstrate several creative algorithms and techniques

for segmentation, recognition and object detection on grapevine images.

2.1 Existing technology

2.1.1 Systematic solution

In paper [1], they designed and implemented a complicated prototype robot system

for grapevine pruning, this system integrated different technologies together. First, a

mobile platform straddles the row of grapevines, and it takes picture of each grapevine

with trinocular stereo cameras while it moves; secondly, a computer vision system

constructs a three dimensional model of the grapevine; then an artificial intelligence

10

(AI) system makes the decision about which point to prune; finally a robot arm conducts

the pruning operation based on the decision made by the artificial intelligence system.

Figure 2.1: Main components of the robot system presented in [1]

As shown in Figure 2.1, this system consists of four major modules, each module

has its individual task and needs to provide required output for the next one, detailed

introduction of each module is as follows:

1. Mobile platform - The mobile platform provides a desirable and controllable en-

vironment for taking pictures of grapevines, the whole construction looks like a

small mobile cabinet. This platform straddles a row of grapevines, and blocks

out sunlight, three cameras are installed on one side of the wall in this cabinet,

and the wall on the other side is colored blue to facilitate the segmentation of

grapevines from the background.

2. Computer vision system - The computer vision system takes the images from

the trinocular stereo cameras, and then constructs a 3D model of the grapevine’s

structure based on a set of stereo frames. It uses different technologies such as im-

age segmentation, 2D structure detection, correspondence finding and incremental

3D reconstruction etc. A complete and continuous 3D model of a grapevine is

necessary for the next AI system to make decision about where pruning operation

should be conducted and which canes should be removed in order to prune the

grapevine properly.

3. AI system - This module is in charge of pruning decision support, it gets the 3D

11

model of each grapevine from the previous module, at the end it commands the

next module to operate accordingly. Each grapevine pruning strategy is described

by a feature vector of proper attributes of the canes that will be kept. For instance,

appropriate attributes can be length, position, distance below wires, angle from

head, and whether they grow from the trunk, or another cane. A cost function

which is a simple linear combination of features is also used to measure pruning

quality using grapevines labeled by viticulture experts. For each grapevine, all

the possible pruning scheme is considered one by one, and the highest scoring

pruning scheme will be selected.

4. Robot control system - This is the last operation module which includes path

planning and robot arm control. The path planner computes a collision-free

trajectory taking the robot arm to the selected pruning points, it uses randomized

path planner algorithm which requires a collision detector, an inverse kinematics

solver and a local path planner. Once the pruning points are selected in the

previous stage, the robot arm needs to sweep the cutting tool through the cane

to make each cut, this action is called a cut motion, for pruning a cane there can

be many possible cut motions. In order to find one that is collision-free, it first

samples random cut motions, and then test each one with the local path planner.

When it cannot find a collision-free cut motion close to the head, it moves the

pruning point farther away. Finally when each cut motion is planned, it will plan

a path that visits each cut in turn.

Each module in this robot system for autonomous grapevine pruning has been

evaluated against the ground truth, as well as the whole system. The computational

performance and evaluation of each module are acceptable, but the result of integrated

testing is certainly unreliable. Even though this complicated system does not work

well enough to be able to replace manual pruning, it undeniably brings many technolo-

12

gies and inspiration which could possibly enable the grapevine pruning to be totally

automated.

There are also some similar systems proposed in different papers, even though they

all approach the goal in various ways, the fundamental among these papers are more

or less the same, see the flowchart in Figure 2.2 of a proposed process in paper [2] as

following:

Figure 2.2: Flowchart of a proposed approach from [2]

2.1.2 Structure extraction on images

To our knowledge and based on the research we have done, we can say that the most

common opinion on the matter of grapevine pruning automation always includes image

processing and image analysis, this part of work is inevitable no matter for 3D model

construction or generating source data for future intelligent pruning model training.

Usually this part is also where the first big obstacle is located, because we intrinsically

expect an output as good as possible from this stage which can benefit the pruning

decision support, so the study on grapevine structure recognition becomes significant.

13

The structure of grapevine in the image should be extracted in the first step,

tremendous efforts have been put on this based on different algorithms and perspectives.

Also the structure of grapevine is similar with any other kind of fruit trees, theoretically

the study on these fruit trees should also be applied on grapevine.

In paper [3], they proposed a new algorithm called simultaneous tracking of two

edges to extract the stems of fruit tree. They consider the stem area as a set of

scanning beam sequences, mathematically represented by a directed graph G = (V, E).

The vertex V is the scanning lines connecting the edges of the two sides of the branches,

and the edge E is the path connecting the scanning lines. The goal of simultaneous

tracking is to find a shortest path from the source vertex (seed scanning beam) to the

target vertex (root scanning beam). Theoretically, there are countless paths from the

source vertex to the target vertex. It is not feasible to search for the shortest path by

traversing all the paths. To solve this problem, several constraints are added during the

search process to limit the number of candidate scanning beams, Figure 2.3 illustrates

one step of tracking the scanning beam.

Figure 2.3: One step of tracking scanning beam [3]

14

Moreover, after getting the stem area of the fruit tree, one can also get the structure

information, namely where are those branch points. This can be done by applying

image thinning algorithms, there are many image thinning algorithms including several

conventional algorithms and some advanced ones [4] [5]. After this we can get the

skeleton of the fruit tree, it means we can reduce the structure to one-pixel width, and

we can find out the branch points by counting the neighborhood pixels according to

some rules. While there can be one problem, the intersection of branches in image could

generate pseudo branch points, the solution of this issue has also been presented in [3].

Figure 2.4 shows this problem, N1 and N2 are two pseudo branch points generated by

the intersection of two branches in image.

Figure 2.4: Pseudo nodes generated by intersection of branches

Structure extraction and recognition on images is a hot topic in computer vision,

especially because of the popularization and rapid development of big data and machine

learning recent years, there have been many years of research on this field, and new

methods are still emerging. Based on different theoretical backgrounds, thousands of

methods have been formed. However, there is no universal method for images under

different conditions, and most of them are specifically analyzed for specific problems.

Besides these, there are also some other papers related to image processing which

15

have provided excellent ideas and inspiration for this thesis, so we would also like to

refer them here. [6] presents a way of skeletonization of branched volume by shape de-

composition; [7] introduces shape deformation using a skeleton to drive simplex trans-

formations; an adaptive Canny edge detection algorithm is presented in [8]; [9] describes

a center-line extraction method; [10] introduces an adaptive edge detection algorithm;

[11] presents an edge connectivity evaluation algorithm for performance of edge detec-

tors; in [12], a pose-configurable generic tracking of elongated objects are presented,

just to name a few research works related.

2.2 Difficulties in our state

From previous chapter, we have seen some sample grapevine pictures we took from

the vineyard, due to the limitation, our first difficulty comes from the complex back-

ground of images. In those images we took, backgrounds are quite disorderly and messy,

it consists of snow, soil, grass, iron wire and some other high-detail regions, all of these

components turned the structure extraction and recognition task extremely difficult.

Because usually the structure extraction and recognition are done by several different

features of images such as color, grayscale difference, gradient, texture, mathematical

property and etc., but the complex backgrounds destroy all these features which we

can use. And all the literatures we reviewed in the last section, they use a consis-

tent background, for example, using a white curtain behind the grapevine when they

take pictures, such way they could get rid of the disorderly background and make the

recognition task much more easier.

For instance, if we first simply apply an adaptive thresholding algorithm where

threshold value is the mean of neighbourhood area on one of our images, the result

shows in Figure 2.5.

16

Figure 2.5: Thresholding result

It is obvious that the result is not acceptable and therefore it is not possible to be

further processed for getting useful information no matter how we tune the parameters

of different thresholding algorithms. Meanwhile we also faced the same difficulty when

we apply other algorithms such as edge detection based on gradient filter, the Canny

edge detection result shows in Figure 2.6.

Figure 2.6: Canny edge detection result

Another difficulty is finding hierarchical information of a grapevine, discover where

a cane or shoot grow from in the images can be confusing and misleading due to the

intersection of different branches. Even though there are some solutions in the former

literature review, they are for some other fruit trees which have simpler structure than

grapevines, see a grapevine skeleton example in Figure 2.7.

It is clear that the region near the middle part of the skeleton image is quite

complicated, the branches cross each other quite often because of the irregularity of the

17

Figure 2.7: A grapevine skeleton example

growth of grapevines, they formed a bunch of closed rings, thus most of the existing

algorithms became inapplicable, and this is also the reason why we need to come up

with a workaround.

18

Chapter 3

Our approach

3.1 Overall process

After a long time of trying and thinking, also take the opinions we got from some

experts in the field of image processing into consideration, we just realized that it is

almost not possible to extract the structure information of grapevines from those images

we have because of the complex background, at least no one have ever successfully

processed images with such complex backgrounds before. To our knowledge one way

that might help is deep learning, but such way requires a lot of data with ground truth,

which is unrealistic in our case.

If we want to use any kind of AI technique to help the decision support of grapevine

pruning, we first need to transform the image of grapevine to structured representation

which can serve as the ground truth, also it requires a mass of images of grapevine.

Within the scope of our ability, we are not able to collect enough images as it might

requires, also combine the difficulty of image processing under complex background, we

think that some kind of user interactions are inevitable, so what we would like to do is

providing an application which could benefit us as well as people whoever intend to do

19

the same thing with us. See a general flowchart of such application in Figure 3.1.

Figure 3.1: Flowchart of our approach

Most of the user interactions during the process are basically intuitive, so peo-

ple without too much technical background can still use this application without any

difficulty. The detailed explanation of each step in our approach is as following:

1. At the beginning, we provide an interface for users to upload their grapevine

image under any kind of condition, and user could have further operation on this

20

image. The prototype of this application shows in Figure 3.2.

Figure 3.2: Upload image

2. Then the user could click on the image along any branch they choose from be-

ginning to end, so there will be several points that lie on a branch in the image,

it looks like in Figure 3.3, all the red markers are generated by mouse click from

user.

Figure 3.3: Mark the trunk

3. After marking a complete branch from the beginning till the end, user could

21

submit the pixels information to the back-end for further processing. The sub-

mitted information will be in the format like in Figure 3.4, it will send both the

coordinates information and the hierarchy for each branch.

Figure 3.4: The selected pixels information of the trunk

4. User needs to repeat the same action for each branch until all the branches are

marked, and user will finally get all the pixels within each branch respectively as

well as the structured representation of current grapevine.

Figure 3.5: All the branches get marked

22

3.2 Tools we use

In this section, we are going to introduce several tools we used in this thesis mainly,

the programming language we used Python, and for image processing and array ma-

nipulation we used OpenCV and Numpy respectively.

3.2.1 Python

Python is a programming language developed by Guido van Rossum, which quickly

became very popular, mainly because of its simplicity and code readability. It enables

programmers to express ideas with fewer lines of code without compromising readability.

Speaking of scientific computing, the first thing that will be mentioned is MAT-

LAB. However, in addition to some of MATLAB’s highly specialized toolboxes that

cannot be replaced, most of the common features of MATLAB can be found in the

Python world. Compared with MATLAB, scientific computing with Python has the

following advantages:

1. First of all, MATLAB is a commercial software and it is expensive. Python

is completely free, and many open source scientific computing libraries provide

Python’s calling interface. Users can install Python and most of its extension

libraries for free on any computer.

2. Second, Python is an easier-to-learn and more rigorous programming language

than MATLAB. It allows users to write code that is easier to read and maintain.

3. Finally, MATLAB focuses on engineering and scientific computing. However,

even in the field of computing, various requirements such as file management,

interface design, and network communication are often encountered. Python has

23

a rich library of extensions that make it easy to perform advanced tasks, and

developers can use Python to implement the full range of functionality required

for a complete application.

Python is slower than languages like C/C++. That is, Python can be easily

extended with C/C++, which allows us to write computationally intensive code in

C/C++ and create a Python wrapper that can be used as a Python module. This

brings us two benefits: First, the code is as fast as the original C/C++ code (because

it is the actual C++ code that works in the background), and secondly, writing code

in Python is easier than using C/C++.

3.2.2 OpenCV

The full name of OpenCV is Open Source Computer Vision, which is the most

popular open source library for computer vision. Here, OpenCV is a library, it is based

on the C++ language, of course, can also be used on other platforms, such as Java,

Python, this library is used in the field of computer vision, and is open source, that is,

we can get its source code and it can be modified to our own needs.

Computer vision includes underlying image processing, middle-level image analy-

sis, and high-level visual technology. Due to the development and maintenance of many

experts of computer vision, OpenCV has extended to every field of computer vision,

and its functions cover almost every research direction. Moreover, the algorithms it im-

plements follow the frontier of computer vision and incorporate the latest technological

algorithms.

OpenCV is very powerful, and its influence in academia and industry is growing.

As a classic of numerical calculations, MATLAB is also one of the most commonly

used tools in the field of image research. In the past, many authors of papers provided

24

MATLAB code. Due to the emergence of OpenCV, especially OpenCV2.x, it greatly

promoted the C++ programming for researchers in the image processing field, so many

researchers now directly give the C++ code implemented in their article. The advantage

of OpenCV for MATLAB is that in most cases, C++ has good efficiency. At the same

time, using C++ programming has great advantages for researchers to enter the market

to find work. In many image-related companies, they also require the job seekers to be

familiarized with OpenCV. So OpenCV is indeed a very important tool in the image

world and is highly recommended by many experts in the filed of image processing.

In OpenCV, all algorithms are implemented in C++. But these algorithms can

be used from different languages like Python, Java etc. This is made possible by the

bindings generators. These generators create a bridge between C++ and Python which

enables users to call C++ functions from Python. To get a complete picture of what is

happening in background, a good knowledge of Python/C API is required. Extending

all functions in OpenCV to Python by writing their wrapper functions manually is a

time-consuming task. So OpenCV does it in a more intelligent way. OpenCV gener-

ates these wrapper functions automatically from the C++ headers using some Python

scripts.

3.2.3 Numpy

When using OpenCV in Python, it actually reads the image in a data structure

called numpy.ndarray, numpy.ndarray is a powerful N-dimensional array object provided

by NumPy which is the fundamental package for scientific computing with Python.

NumPy is an extension of the Python language, support for multidimensional arrays

and matrix operations, in addition to providing a large number of mathematical function

libraries for array operations. Besides this, NumPy also contains other useful tools such

as linear algebra, Fourier transform, random number capability and etc.

25

Standard Python uses a list to hold a set of values that can be used as an array, but

since the elements of the list can be any object, the object in the list is a pointer to the

object. So in order to save a simple [1, 2, 3], you need to have 3 pointers and three integer

objects. For numerical operations, this structure is obviously a waste of memory and

CPU computing time. The birth of NumPy makes up for these shortcomings. NumPy

provides two basic objects: ndarray (N-dimensional array object) and ufunc (universal

function object). Ndarray is a multidimensional array that stores a single data type,

while ufunc is a function that can process arrays.

3.3 Concepts of visual information processing

We have introduced the overall process in the former section, it is apparent that

the main work of this thesis is to process the grapevine images with users’ mark, that

is, between step 3 and step 4, after users submit the images and pixels information

of each branch, we should process it properly in order to identify all the pixels in

the same branch as well as related necessary structure information and give users the

feedback, finally generate the structured representation of each grapevine based on the

segmentation of branches.

Image is considered as one kind of visual information, and in fact visual informa-

tion processing consists of several different subjects: image processing, image analysis,

pattern recognition and computer vision. All of these subjects focus on different stages

in the processing and they vary from their inputs and outputs, purposes and applicable

algorithms, knowing which page we are on could help us to choose the appropriate

approach to complete the relevant tasks. The table in Figure 3.6 shows the differences

among these subjects, and the work in this thesis is basically included in the field of

image processing and image analysis.

26

Figure 3.6: Different terms in visual information processing

Image analysis generally uses mathematical models combined with image process-

ing techniques to analyze underlying features and superstructures to extract information

with certain intelligence. Image processing, generally refers to digital image processing,

a technique of analyzing an image with a computer to achieve the desired result. A

digital image is a large two-dimensional array that is sampled and digitized by a digital

camera, scanner, etc. The elements of the array are called pixels and have an integer

value called a gray value. The main content of image processing technology includes im-

age compression, enhancement and restoration, matching, description and recognition.

Common processing includes image digitization, image encoding, image enhancement,

image restoration, image segmentation, and image analysis.

Image analysis and image processing are closely related. There is a intersection

between the two to a large extent, but they are different. Image processing focuses

on research in signal processing, such as image contrast adjustment, image coding,

denoising, and various filtering studies. However, image analysis is more focused on

the content of images, including but not limited to the various techniques of image

27

processing, which tend to analyze, interpret and identify image content. Therefore,

image analysis and pattern recognition, computer vision in the field of computer science

are more closely related. We can have a better understanding about the relations from

Figure 3.7.

Figure 3.7: Relations among different terms

3.4 Image processing and analysis

3.4.1 Image scaling

The first action we need to perform after we get the images of grapevine is to scale

those images, that is, resize the images to a more preferable size. In our case, there are

two main reasons for us to do so. First reason is the images we took from the vineyard

is too big (high resolution), the resolution of each image is 6000*4000, namely there

are 24,000,000 pixels in one single image, it is too expensive to process image with such

size since most of the image processing algorithms need to loop through each pixels,

moreover if we consider a RGB image with 3 channels as well, the cost will even be

triple, it could slow down the performance of our application considerably, moreover,

higher resolution image require more storage space. Second reason we need to resize

the image is because we also need to process the images from unknown users besides

28

our own images, we can not demand everyone to upload images with a constant size, so

we need to resize the images with various size to a consistent size in order to facilitate

our further processing.

In computer image processing and computer graphics, image scaling refers to the

process of adjusting the size of a digital image. Image scaling is a non-trivial process

that requires a trade-off between processing efficiency and the smoothness and sharpness

of the results.

In OpenCV, there are two ways to scale a image, one is using mathematical inter-

polation, another one is using image pyramid. But in image pyramid, it can only shrink

or zoom an image proportionally, which means a M * N image will become M/2 * N/2

in case of shrinking and 2M * 2N in case of zooming. And if we want the size of image

to be constant (in our case all the images will be resized to 600*400) before we apply

further operation, image pyramid is not suitable for us because we can not ensure that

any image we get will be a proportion of 600*400. Thus we choose to use mathematical

interpolation to scale the images, this way is able to scale any image with any size to a

designated size.

Image scaling can be interpreted as a form of image resampling or image recon-

struction from the view of the Nyquist sampling theorem. According to the theorem,

downsampling to a smaller image from a higher-resolution original can only be carried

out after applying a suitable 2D anti-aliasing filter to prevent aliasing artifacts. The

image is reduced to the information that can be carried by the smaller image. In the

case of upsampling, a reconstruction filter takes the place of the anti-aliasing filter.

In the Python API of OpenCV, the corresponding function is :

dst = cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])

29

This function resizes the image src down to or up to the specified size, the size and

type are derived from the src, dsize, fx, and fy. All the parameters are as following:

• src - input image.

• dst - output image; it has the size dsize (when it is non-zero) or the size computed

from src.size(), fx, and fy; the type of dst is the same as of src.

• dsize - output image size; if it equals zero, it is computed as:

dsize = size(round(fx ∗ src.cols), round(fy ∗ src.rows))

Either dsize or both fx and fy must be non-zero.

• fx - scale factor along the horizontal axis; when it equals 0, it is computed as

(double)dsize.width/src.cols.

• fy - scale factor along the vertical axis; when it equals 0, it is computed as

(double)dsize.height/src.rows.

• interpolation - interpolation method

Different interpolation methods are suitable for various occasions and have distinct

cost, the interpolation method can be selected among these options:

• INTER NEAREST - nearest neighbor interpolation

• INTER LINEAR - bilinear interpolation (default option)

• INTER CUBIC - bicubic interpolation

• INTER AREA - resampling using pixel area relation

• INTER LANCZOS4 - Lanczos interpolation over 8x8 neighborhood

30

For example, nearest neighbor interpolation is one of the simplest ways of increasing

image size, replacing every pixel with the nearest pixel in the output, for upscaling this

means multiple pixels of the same color; bilinear interpolation works by interpolating

pixel color values, introducing a continuous transition into the output even where the

original material has discrete transitions. Although this is desirable for continuous-tone

images, this algorithm reduces contrast (sharp edges) in a way that may be undesirable

for line art; bicubic interpolation yields substantially better results, with only a small

increase in computational complexity.

Preferable interpolation methods are INTER AREA for shrinking, while for zoom-

ing, INTER CUBIC and INTER LINEAR are better. So for the grapevine images

we have, we use this function with INTER AREA option to reduce each of them to

600*400, and for images uploaded by users, we reduce the size to 600*400 as well if

the image is bigger than this designated size and vica versa. See an example of resized

image in Figure 3.8, the original size of this image is 10.5MB while after resizing it

becomes 451KB.

Figure 3.8: Example of resized image

31

3.4.2 Bilateral Filter

In the process of image acquisition, transmission and storage, the image is often

degraded by various effects of noises, and the image preprocessing algorithm is di-

rectly related to the effect of subsequent image processing, such as image segmentation,

recognition, edge extraction, etc., in order to obtain high-quality digital images, it is

necessary to denoise the image to maintain the original information integrity (ie, the

main features) while removing the useless information in the signal. Therefore, noise

reduction processing has always been a hot spot in image processing and computer

vision research.

The ultimate goal of image denoising is to improve a given image and solve the

problem of image quality degradation due to noise interference. Through the denoising

technology, the image quality can be effectively improved, the signal-to-noise ratio

can be increased, and the information carried by the original image can be better

reflected. As an important preprocessing method, the image denoising algorithm has

been extensively studied. How to find a better balance point in resisting noise and

retaining details has become the focus of research in recent years.

In fact there are various noises, therefore there are different algorithms based on

diverse theories for different kinds of noises accordingly. Here in this thesis, we choose

spatial filtering which is one of the most common and basic approach. Spatial filtering

is performed by directly performing data operations on the original image to process

the grayscale values of the pixels, besides, it is implemented by image convolution.

The digital image is a two-dimensional discrete signal. The convolution operation

on the digital image is to use the convolution kernel (convolution mask) to slide on the

image, and multiply the grayscale value of the pixel on the image with the corresponding

value on the convolution kernel, and then all the multiplied values are added as the new

32

grayscale value of the pixel on the center of convolution kernel, and finally sliding over

all pixels on the image. Figure 3.9 is a classical illustration for one step in the process.

Figure 3.9: A classical illustration of image convolution

It can be seen that an original image can be transformed into another image after

being processed by a certain convolution kernel. For the filter, there are certain rules:

1. The size of the filter should be odd so that it has a center, such as 3x3, 5x5 or

7x7. There is a center, and there is also a radius, for example, the radius of a 5x5

core is 2.

2. The sum of all the elements of the convolution kernel should be equal to 1, in

order to ensure that the brightness of the image before and after filtering remains

unchanged. Of course, this is not a hard requirement.

3. If the sum of all elements of the convolution kernel is greater than 1, the filtered

image will be brighter than the original image. Conversely, if it is less than 1, the

33

resulting image will be darker. If the sum is 0, the image will not turn black, but

it will be very dark.

4. For filtered structures, negative numbers or values greater than 255 may occur.

In this case, we can truncate them directly to 0 or 255. For negative numbers,

absolute values can also be taken.

By giving different values to the convolution kernel, we can achieve different result.

Usually the filter for noise reduction will also cause the loss of details in the image such

as edges, because both noise and edge are considered as high frequency content in the

image, so when we apply low-pass filter, both of them get eliminated. For example,

mean filter and Gaussian filter will blur the edges in the image. But in the later

processing, the edge information is important for us, so here we choose to user bilateral

filter which was defined for, and is highly effective at noise removal while preserving

edges.

Bilateral filtering is a nonlinear filter that achieves the effect of maintaining edges

and smoothing noise. As with other filtering principles, the bilateral filtering also uses

a weighted average method, it uses the weighted average of the luminance of neighbor

pixels to represent the intensity of a pixel, and the weighted average is based on a

Gaussian distribution. Most importantly, it also uses one more (multiplicative) Gaus-

sian filter component which is a function of pixel intensity differences. The Gaussian

function of space makes sure that only pixels that are ’spatial neighbors’ are considered

for filtering, while the Gaussian component applied in the intensity domain (a Gaussian

function of intensity differences) ensures that only those pixels with intensities similar

to that of the central pixel (’intensity neighbors’) are included to compute the blurred

intensity value.

Two weighted domains are considered simultaneously in bilateral filtering, the spa-

34

tial domain and pixel value domain. The principle of bilateral filtering is a multiplication

of a Gaussian function related to spatial distance and a Gaussian function related to

grayscale distance. The Python API in OpenCV provides a bilateral filtering function:

dst = cv2.bilateralF ilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])

The most important parameter there are sigmaColor and sigmaSpace, sigmaColor is

filter sigma in the pixel value domain, a larger value of the parameter means that farther

colors within the pixel neighborhood will be mixed together, resulting in larger areas

of semi-equal color; sigmaSpace is filter sigma in the spatial domain, a larger value

of the parameter means that farther pixels will influence each other as long as their

colors are close enough. In our case, both sigmaColor and sigmaSpace are 75, this is

an empirical choice. The resulting images after applying normal Gaussian filtering and

bilateral filtering is shown in Figure 3.10, we can see that both of them blurred the

image in small high-detail regions in order to reduce noise, while the bilateral filtering

did not blur the edge too much.

Figure 3.10: Comparison of two filtering

35

3.4.3 Region of interest

The last two sections were preprocessing of the entire grapevine image, the purpose

is to transform an image to a better state for further operation, but from this section,

we will focus on each branch in the images separately, this involves region of interest.

In the field of image processing, a region of interest (ROI) is an image region selected

from an image, which is the focus of your image analysis. Using the ROI to define the

target you want to read can reduce processing time and increase accuracy. Usually ROI

is a regular shape such as rectangle, circle, ellipse and etc.

So for each cane in the image, we can get the coordinates information from users’

input, for example, see in Figure 3.11, red points in this image represent the user’s

mouse click along one targeted cane.

Figure 3.11: Example of one marked cane from user

As long as we get the coordinates information of all these red pixels, we can form

36

a rectangle by finding 4 red pixels in the image. If we consider the image as a standard

Cartesian coordinates system, so each pixel has its own coordinate (x, y) in this system,

and lets assume the (xt, yt) is the coordinate for the topmost pixel, (xd, yd) is the

downmost, (xr, yr) is the rightmost and (xl, yl) is the leftmost. The height of the ROI

rectangle will be yt − yd and the width of the ROI rectangle will be xr − xl.

Figure 3.12 shows the region of interest for the marked cane in Figure 3.11. Here

the topmost pixel happens to be the leftmost and the downmost one happens to be the

rightmost, so we calculate the width and height of this ROI based on the coordinates

information of these two pixels.

Figure 3.12: ROI for the marked cane

There can be one little problem when a cane is exactly in the vertical or horizontal

37

direction with very small curvature, both situations we can get a very narrow ROI due

to the width difference is so little in case of a vertical cane and height difference is so

little in case of a horizontal cane, such narrow ROI would not be able to cover the region

of the whole cane. In order to solve this issue, we can just add one more condition check

by setting a threshold value, if the width or height we calculate as mentioned before is

less than this threshold value, we just simply give it additional value. The exact value

we should add depends on the situations, obvious a trunk needs more than a cane since

trunk is usually thicker than cane.

Moreover, the ROI we get now is not good enough, because it still contains too

much irrelevant information and even other untargeted branches, we want to erase

them. So we will use a new approach to get a ROI as similar as possible with the

targeted branch.

We achieve this by using a polyline to fit the targeted branch. After we get the

marked points on one branch, we use cv2.line() function to draw lines on the image, for

example, if the user marked ten points (p1, p2, ..., p10) on a single branch from one side

to another side, we will draw line between p1 and p2, then line between p2 and p3, ...,

finally line between p9 and p10. Thus a polyline is formed to approximate the shape of a

targeted branch. Two things we need to care here is the color and width of all the lines

we draw. The color can be selected randomly as long as the color doesn’t appear in the

image, we choose the color RGB(0,255,255), because such color is rare under natural

environment, it can be identified easily later. The width of the line we draw should be

wide enough to cover all the region of a branch, but at the same time the width of line

should not be too wide, otherwise it will cover too much useless information.

Figure 3.13 shows an example of the polyline of a branch generated by all the

points marked by user on the image.

After we draw the polyline on image, we can easily convert the image to a binary

38

Figure 3.13: Polyline on ROI of marked cane

image where the region of polyline is white and black for the rest part, this is also why

before we need to choose an unique color for the lines we drew. Then we use this binary

image as mask, pass it to cv2.bitwise and() function with the original ROI image, and

we finally get a better ROI.

Figure 3.14: Mask and a better ROI

We can see in Figure 3.14 that most part of the original ROI is eliminated, therefore

we can only focus on the rest part where we actually care.

39

3.4.4 Target object segmentation

There are four basic tasks in computer vision: a) image classification, b) object

localization, c) object detection, d) object segmentation. Image classification describes

the entire image by manual feature or feature learning method, and then uses the

classifier to discriminate the object category; object localization not only needs to

identify what is in the image, but also gives the position information of the target in

the image, briefly speaking, a rectangular box is used to frame the identified objects;

in object localization, there is usually only one or a fixed number of targets, and object

detection is more general, and the types and numbers of targets appearing in the image

are not fixed, therefore, target detection is a more challenging task than targeting;

object segmentation is a more advanced task of target detection; target detection only

needs to frame the bounding box of each target, while object segmentation needs to

further determine which pixels in the image belong to which target.

From the previous section, we can get the improved ROI of each branch selected by

users with very less background information, we can consider the task of object local-

ization is done, now what we need to do is the object segmentation, that is, determine

which pixels in the given ROI belong to the target branch. Image segmentation divides

the image according to features such as grayscale, color, texture, and shape, the main

methods of segmentation are:

1. Threshold-based segmentation - The basic idea of the threshold method is to

calculate one or more gray scale thresholds based on the gray scale features of

the image, and compare the gray scale value of each pixel in the image with the

threshold, and finally divide the pixels into the appropriate categories according

to the comparison result. Therefore, the most critical step of this type of method

is to find the optimal gray threshold according to a certain criterion function.

40

2. Edge-based segmentation - The collection of consecutive pixels on the boundary

line of two different regions in the image is a reflection of the local feature dis-

continuity of the image, which reflects the mutation of image characteristics such

as gray scale, color and texture. In general, the edge-based segmentation method

refers to edge detection based on gray values, which is based on the observation

that the edge gray scale will exhibit step or roof type changes. There is a sig-

nificant difference in the gray values of the pixels on both sides of the step edge,

while the roof edge is located at the turning point where the gray value rises or

falls. Based on this feature, edge detection can be performed using a differential

operator, that is, the extremum of the first derivative and the zero-crossing of the

second derivative are used to determine the edge. The specific implementation

can be performed by image convolution.

3. Region-based segmentation - According to the similarity criterion of the image,

it is divided into different region blocks. There are mainly seed region growth

method, regional division and merger method, watershed method.

4. Segmentation based on graph theory - Such methods associate image segmentation

problems with the min cut problem of the graph. First, the image is mapped

to a weighted undirected graph. Each node in the graph corresponds to each

pixel in the image. Each edge is connected with a pair of adjacent pixels. A

segmentation of the image is a cut of the image, and each region that is segmented

corresponds to a subgraph in the image. The optimal principle of segmentation is

to make the divided subgraphs maintain the greatest similarity internally, while

the similarity between subgraphs is kept to a minimum. The essence of the graph-

based segmentation method is to remove a specific edge and divide the graph into

several subgraphs to achieve segmentation. The graph theory-based methods

currently known include GraphCut, GrabCut, and Random Walk.

41

5. Segmentation based on energy functional - This kind of method mainly refers to

the active contour model and the algorithm developed on it. The basic idea is to

use continuous curve to express the target edge and define an energy functional

such that its independent variable includes the edge curve. Therefore, the process

of segmentation is transformed into the process of solving the minimum value

of the energy functional, which can generally be achieved by solving the Euler

equation corresponding to the function. The position of the curve when the

energy reaches the minimum is the contour of the target.

Each of these 5 mentioned methods has several specific implementations based

on different algorithms, but even though there are so many segmentation algorithms,

finding the one which is suitable for our case is still very difficult. For example, both

threshold-based and edge-based segmentation totally rely on the gray scale value of

pixels in the image, if gray scale value of some pixels are so close or even the same, they

would be categorized to a same region in case of threshold-based segmentation or can

not be detected as the edge in case of edge-based segmentation. Due to the complex

background and light condition in our images, the gray scale value of some pixels belong

to the region of a branch can be very close or even the same with some other pixels

belong to the background, so it is impossible to find a proper threshold to segment these

pixels or detect the edge between these pixels if they are adjacent. Moreover, in case

of region-based segmentation and segmentation based on graph theory, both of them

require user interaction at certain extent, this hard requirement limits us, because once

we get the grapevine image and coordinates information of each branch at the back-end

of our application, we are no longer able to get any additional user interaction there,

thus these methods become inapplicable as well. After some experiments of different

algorithms, we found out that the threshold-based segmentation under HSV color space

can give us better result.

42

Usually the images on the screen are represented by RGB color space, RGB color

space is derived from a color TV using a cathode ray tube, and RGB represents three

primary colors (R-red, G-green, B-blue), and the specific color values are superposed

by these three primary colors. In our case, when we want to extract a targeted cane

from the ROI, this cane should have a consistent color since it grows in the same year,

but in fact some parts of the cane is darker while some other parts are brighter due to

the light condition when we took photo, so the color on a branch can be very different

in the RGB color space.

But there are other color spaces which are better than RGB color space to represent

a color, for example the HSV color space, where H is hue, S is saturation, and V is value.

The HSV color space separates the color information from the brightness information

and places them in different channels, reducing the effect of light on specific color

recognition. The HSV color model is in Figure 3.15.

Figure 3.15: HSV color model

• The hue is measured by the angle, and the value ranges from 0◦ to 360◦ (in

43

OpenCV it is 180◦). It is calculated from the red counterclockwise direction, red

is 0◦, green is 120◦, and blue is 240◦.

• Saturation indicates the extent to which the color is close to the spectral color. A

color that can be thought of as the result of mixing a certain spectral color with

white. The greater the proportion of the spectral color, the higher the color is close

to the spectral color, and the higher the saturation of the color. If the saturation

is high, then the color is deep and colorful. If the white color component of the

spectral color is 0 so the saturation is the highest. Usually, the saturation ranges

from 0% to 100%, the larger the saturation value, the more saturated the color.

• The value indicates the degree of color brightness, for the light source color, the

brightness value is related to the brightness of the illuminant; for the object color,

this value is related to the transmittance or reflectance of the object. Usually the

value ranges from 0% (black) to 100% (white).

For extracting the branch, we should find the correct range in the HSV color

space. And there is conversion formula to convert RGB value to HSV value, after we

get coordinate of each pixel marked by users, we can get the RGB value of each pixel

as well, and then we can convert the RGB value to HSV value accordingly. But since

the branches in images are very thin, it is possible that some points marked by a user

are out of the region of a branch, this can cause some RGB values we get are not the

actual value of pixels within the region of a branch, we can get a bad result if we use

these wrong values. Fortunately, we will get not only one or two pixels from one single

branch, but several ones, so the error ones are minor and correct ones are the majority,

therefore we can analyze all the values together and find the most likely range in HSV

color space. See two examples of extraction result in Figure 3.16.

44

Figure 3.16: Two examples of extraction result

3.4.5 Morphological operation

The results we got from previous stage contain some isolated pixels and also dis-

continuity caused by the iron wire which crosses in front of the branch. Here in this

stage, we can apply mathematical morphological transformations on the images to get

a better result.

The term morphology usually refers to a branch of biology that studies the mor-

phology and structure of plants and animals. The morphology in image processing

45

often indicates mathematical morphology, mathematical morphology is a discipline of

image analysis based on lattice theory and topology. Morphological transformations are

some simple operations based on the image shape. It is normally performed on binary

images. It needs two inputs, one is our original image, second one is called structuring

element or kernel which decides the nature of operation. There are four most common

morphological operators: dilation, erosion, opening and closing.

Dilation or erosion is the convolution of an image with a structuring element. The

structuring element can be any shape and size, it has a separately defined reference

point, which we call an anchorpoint. In most cases, the structuring element is a small

solid square or circle with a reference point in the middle. In fact, we can think of the

structuring element as a template or a mask. The dilation is the operation of finding

the local maximum. The structuring element is convolved with the image, that is, find

the maximum value of the pixel of the area covered by the structuring element, then the

maximum value is assigned to the pixel specified by the anchorpoint. This will cause

the highlighted area in the image to grow gradually. And erosion is just the opposite

of dilation.

Erosion erodes away the boundaries of foreground object, all the pixels near bound-

ary will be discarded depending upon the size of kernel. So the thickness or size of the

foreground object decreases or simply white region decreases in the image. It is useful

for removing small isolated points. However dilation increases the foreground object

region in the image, opening is just another name of erosion followed by dilation, and

closing is reverse of opening, dilation followed by erosion. The opening operation gener-

ally smoothes the contour of the object, breaks the narrow discontinuities and eliminates

the fine protrusions, and the closing operation also makes the contour smoother, but

contrary to the opening operation, it usually eliminates small holes and fills the gaps in

the image. In Figure 3.17 we can see that the opening operation reaches better result,

46

but still left some discontinuity generated by the iron wires.

Figure 3.17: Examples of morphological operation

The result of opening operation contains much more less isolated regions which

obviously do not belong to the region of branch, this is because the order of erosion and

dilation. When we apply opening operation, erosion comes first, all the small isolated

white regions are eroded away completely, so the consequent dilation can not restore

those isolated pixels which are deleted in the previous operation. But in the case of

closing operation, dilation comes first, it dilates those isolated white regions as well, so

some relatively bigger isolated regions can not be completely deleted even the erosion

operation is applied after.

Now we can easily notice that all the white pixels in the binary image after opening

operation are the pixels which actually belong to the region of branch, so we can get

the coordinates of these white pixels in the ROI of each branch. The last step is to shift

47

these coordinates from ROI of each branch to the original images, these coordinates we

get currently are relative information to each branch, if we want to get the absolute

coordinates of each pixel in the original image, we can do it by finding the coordinate

of pixel which locates in the top left corner of each ROI, and then add the coordinates

value of this pixel to each relative coordinates we have respectively.

48

Chapter 4

Conclusion

4.1 Result

After chapter 3, we are able to get almost all the pixels within the region of each

branch, so based on this result, we can also reconstruct each grapevine image where each

branch in the image is identified separately by the absolute coordinates information.

At the end, we can generate structured representation for each grapevine on images

and present it in the application.

In general, this thesis proposed a novel approach to collect grapevine images and

to recognize the structure of grapevine on images under any background with the as-

sistance of some user interactions and a series of image processing algorithms. Such

approach does not require high quality images which are relatively difficult to obtain

and can be generalized easily. Also it helps to represent grapevine on images by struc-

tured languages such as XML or JSON since all branches are extracted individually,

the structured representation can directly serve as source data for the decision module

training of any AI technique. Moreover, this thesis summarized almost all the existing

approaches and opinions in the related field, and also addressed some difficulties and

49

traps of the study on grapevine pruning automation.

4.2 Future work

This thesis is just a preliminary research for a new autonomous grapevine pruning

system, and only focus on the back-end image processing in the application, the front-

end work is done by other people in our group, there is still a long way ahead to walk

through.

Our proposed approach is not perfect and robust enough, there are still several

drawbacks in each step of our approach. For example, all the image processing algo-

rithms we chose may not be proper under some special situations, and the result of our

approach is actually highly effected by the pixel information chosen by users, wrong

click on the images could impede all the subsequent procedures. In the future we should

enable our application to have higher fault tolerance to the wrong click information of

users, it can be achieved both in the front-end and back-end. One solution of this

problem is our application should be able to let user zoom the input image in order to

get bigger space to click on each branch, thus we can avoid the wrong click from the

user input, but such way should answer the question of how to get correct coordinates

information of each pixel from the zoomed image. Another problem is the pixels of

each branch we got are not actually accurate enough, some pixels are missed due to

the discontinuity caused by the iron wire, while some other pixels which do not belong

to a branch are considered to be one part of the branch due to the false segmentation

or morphological operation, besides it is hard to develop a benchmark to measure the

accuracy. Also, the generation of structured representation of each grapevine images

should be implemented accordingly. All of these problems addressed above should be

solved and our application should be improved and complete in the future.

50

Bibliography

[1] Tom Botterill, Scott Paulin, Richard Green. A Robot System for Pruning Grape

Vines, Journal of Field Robotics, 2016, 34(6).

[2] Ming Gao, Tien-Fu Lu. Image Processing and Analysis for Autonomous Grapevine

Pruning, International Conference on Mechatronics and Automation, 2006.

[3] He Leiying, Wu Chuanyu, Du Xiaoqiang. Fruit tree extraction based on simultane-

ous tracking of two edges for 3D reconstruction, Transactions of the CSAE, 2014,

30(7): 182-189.

[4] Ben Boudaoud L., Sider A., Tari A.. A new thinning algorithm for binary im-

ages, 2015 3rd International Conference on Control, Engineering and Information

Technology (CEIT).

[5] Abu-Ain W., Abdullah S. N. H. S., Bataineh B., Abu-Ain T., Omar, K.. Skele-

tonization Algorithm for Binary Images, Procedia Technology, 2013, 11: 704–709.

[6] Bo Xiang, Xiaopeng Z., Wei Ma, Hongbin Z.. Skeletonization of Branched Volume

by Shape Decomposition, 2006.

[7] H. B. Yan, S. M. Hu, R. Martin, and Y. L. Yang. Shape deformation using a

skeleton to drive simplex transformations, IEEE Transaction on Visualization and

Computer Graphics, 2008, 14(3): 693-706.

51

[8] Song Renjie, Liu Chao, Wang Baojun. Adaptive Canny edege detection algorithm,

Journal of Nanjing University of Posts and Telecommunications (Natural Science

Edition), 2018, 38(3).

[9] M. Wan, Z. Liang, Q. Ke. Automatic centerline extraction for virtual colonoscopy,

IEEE Transactions on Medical Imaging, 2002, 21(12): pp.1450-1460.

[10] Saheba S. M., Upadhyaya T. K., Sharma R. K.. Lunar surface crater topology

generation using adaptive edge detection algorithm, IET Image Processing, 2016,

10(9): 657-661.

[11] WANG Hongshen, ZHANG Xiangyu, DOU Yongkun. Edge connectivity evaluation

algorithm for performance of edge detectors, Computer Engineering and Applica-

tions, 2018, 54(16): 192-196.

[12] Daniel W., Patrick H.. Pose-Configurable Generic Tracking of Elongated Objects,

2013 IEEE International Conference on Computer Vision.

[13] Joes Staal, Michael D. A., Max A. V., Bram V. G.. Ridge-Based Vessel Segmen-

tation in Color Images of the Retina, IEEE TRANSACTIONS ON MEDICAL

IMAGING, 2004, 23(4).

[14] Maria P. D., Christian C., Borja M., Pilar B., Constantino V., Javier T.. Grapevine

Yield and Leaf Area Estimation Using Supervised Classification Methodology on

RGB Images Taken under Field Conditions, Sensores, 2012, 12: 16988-17006.

[15] Mehmet Sezgin, Bulent Sankur. Survey over image thresholding techniques

and quantitative performance evaluation, Journal of Electronic Imaging, 2004,

13(1):146.

52

