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Abstract: A lightweight model for real-time monitoring
of the load of Hungarian highway traffic is presented in
the paper. The input data of the model are cell phone net-
work event records provided by Magyar Telekom Nyrt.,
the major Hungarian telecommunication company. The
output is a classification of the level of crowdedness of
the Hungarian highways inferred from the activity level of
the mobile telecommunication infrastructure. While pro-
cessing, a data-stream is flowing through a chain of sim-
ple but efficient data structures. For computing anomalies
against the usual behavior of the traffic at given segments
of the highway, so-called break-points, known from the
SAX representation of time-series, are utilized which re-
quire cheap computation. The model is implemented as
a server application able to feed a client web-based visu-
alization application implemented for demonstration pur-
poses. The experiments, performed on anonymized data
covering one month of cell phone records, show that the
presented model is computationally cheap, it efficiently
runs even on low-end hardware such that Raspberry Pi.
Keywords: Anomaly Detection, Mobile Data Analytics,
Visualization

1 Introduction

A method resulting from an industrial research project is
presented in this paper. The presented method has been de-
veloped for a specific and well-defined use case: inferring
the level of the mobility traffic load on Hungarian high-
ways from cell phone network data. The data have been
provided by the industrial partner, Magyar Telekom Nyrt.,
the major Hungarian telecommunication company, a sub-
sidiary of Deutsche Telekom AG.

Experimental outcomes are positive and promising as
the underlying core model is computationally light and
simple. The data structures used and the overall system
architectural-design could be, possibly, exploited for other
applications or use cases. More specifically, the presented
model can be used where there is the need to detect anoma-
lies in time series given a set of nodes and the logs pro-
viding quantitative information describing the activity of
such nodes over time. Even if the developed framework is
specifically build to infer information regarding the Hun-
garian highways mobility infrastructure through the anal-

ysis of the mobile telecommunication infrastructure, the
core model can be adapted to different scenarios and dif-
ferent data logs such as tower cell crowdedness or Internet
backbones nodes activity monitoring.

1.1 Related Work

Nowadays we are witnessing to a constant increasing
speed of networks, furthermore the capability to store and
process conspicuous amount of data can be performed at
affordable prices. This new scenario enables telecom op-
erators to store and process big quantities of logs triggered
by a countless number of events. Along the past years,
the research community proposed several models regard-
ing the possibility to infer or predict information regard-
ing the status of the mobility infrastructure analyzing the
mobile telecommunication event logs. Furthermore, the
evolution of new telecommunication technology standards
such as 5G will bring more efficient and accurate localiza-
tion techniques leading to more precise analysis and esti-
mations [7].

In [6], authors present quite a complex model able to
estimate the traffic flow making use of anonymized tem-
poral series of cell handover logs, building state diagrams
and using Markov Models in order to detect car accidents.

On the other hand, in [8], authors propose a framework
mining several heterogeneous data sources making use of
the MapReduce programming-model (more precisely us-
ing Apache Hadoop) in order to process big amounts of
data in a reasonable amount of time involving high-end
hardware and clusters of machines. The authors of this
contribution are able to estimate the traffic volume and the
speed of the traffic flow.

In [9], the authors provide a full overview of methodolo-
gies providing a possible list of necessary steps in order to
infer traffic information such that i) location data collec-
tion, ii) terminal classification in order to determine which
mobile terminals are located on the road and which means
of transport they are in, while iii) map matching phase in
order to link the extracted location data with the mobility
infrastructure, iv) the route determination process used to
determine the path of the vehicles while the last step is to
perform v) the estimation of the traffic state.

In order to estimate traffic flows the use of origin/des-
tination matrices have been tried out in [10] and [11],



however, as pointed out in [6], these solutions might
be computationally expensive from the technical point
of view and hard to scale when the size of the user set
tends to grow. On the other hand, from the law regulation
perspective these solutions might see limitations on
real deployment scenarios due to privacy concerns and
strict regulations, especially the ones applying within the
European Union.

Within this contribution, a minimalistic approach to
traffic load detection is introduced exploiting just events
triggered by the active utilization of the User Equipments
(Calls, SMS and Mobile Data Usage) without involving
logs related to lower level signalling protocols such as
cell handover event logs. The aim of this research was
to discover at which extent and precision is possible to in-
fer reliable traffic analysis with minimalistic datasets and
minimal computing costs. A server application able to
feed a web-based visualization application has been im-
plemented for demonstration purposes. Experiments pro-
vided on real but anonymized data covering one month of
cell phone records show that the the presented model is
promising and is able to efficiently run even on low-end
hardware.

The rest of this paper is organized as follows: Section
2 gives a description of the available data and the proce-
dure utilized to match telecom data with geographical-map
data. In Section 3, a detailed description of the system ar-
chitecture and the core estimation model are provided. In
the Section 4 the process of traffic load classification is
described. The following Section 5 contains experimen-
tal results and measurements. Finally, in Section 6 some
conclusions and plans for future work are provided.

2 Data Sources and Framework
Initialization

An important part of the presented framework is its initial-
ization to the specific use case, such that highway traffic
load monitoring, in our case, what consists of understand-
ing the data and selecting the towers to be considered rel-
evant by the framework.

2.1 Telecom Data

The industrial partner has granted access to a dataset1 con-
taining several .csv (Comma Separated Values) files or-
ganized in a daily basis containing two main kinds of in-
formation such that

1Due to the signed non-disclosure agreement between the academic
and the industrial partner of the project, each sample of the data, e.g. the
Tables 1 and 2, presented in this paper are synthetic, i.e. contain fictive
information.

Call Detail Record (CDR) data concern the activity logs
of each user interacting with the network on a daily ba-
sis. A CDR is produced by a telephone equipment that
documents the details of a call or other telecommunica-
tions events (e.g. notifications, short message service or
signaling protocols) that involves the telecom provider in-
frastructure.

The dataset is composed by several files accounting a
size of 500GB. The entire information contained within
the dataset covers a range of 31 days, more precisely be-
tween 15th September 2016 and 15th October 2016, where
all the unique identifiers referencing to the users have been
anonymized on a daily basis. The overall number of logs
is around 200 million records per day.

In order to work with just the useful data all the un-
necessary information contained in the dataset such as the
nature of event logs and other information regarding cus-
tomer related data (e.g. phone and events identifiers) have
to be discarded by the framework.

At the end of this process, the CDR files contains three
kind of attributes as presented in Table 1, namely, the
Unique User Identifier (UUID) re-anonymized on a daily
basis (to prevent tracking of user movement across more
days), the date-time information related to the log event
and the Tower Identifier (TID) providing information from
which cell-tower the event has been triggered.

Cell Reference (CR) data provide informations about the
mobile radio-towers and their positioning within the Hun-
garian territory. As illustrated in the Table 2, CR data
contain three attributes, namely, the Tower Identifier (TID)
which connects the CDR data with the CR data, the Lat-
itude and the Longitude regarding the given tower. Due
to how the industrial partner gathered and anonymized
the data, process on which the authors were not involved,
some records contained within the CDR files hold UUIDs
with NULL value or in some cases hold inconsistent TIDs.
Namely some TIDs contained in the CDR logs do not
match any of the TIDs in the CR data. The UIIDs incon-
sistencies are uniformly spread over the locations while
for the inconsistent TIDs is not possible to draw any con-
clusion about the geographical regions affected. In case of
those inconsistent logs, it is not possible to get the subject
performing the action or the location of the event. For this
reason all the affected records, which are around 30% of
all the records, are affected and have to be handled (dis-
carded) by the framework during the on-line computation.

2.2 Geographic Maps Data

In order to get information about Hungarian highways the
research relied on OpenStreetMap2 (OSM) data. The open
project makes available data about roads, trails, cafes, rail-
way stations and other basic map features from all around
the world.

2https://www.openstreetmap.org/



UUID date-time TID
6776554S3449 2016-09-15 13:30:41 10B32F03E10CB
777865354435 2016-09-15 00:27:50 10DA0232324BC
677655453449 2016-09-15 17:44:08 00443344DFFEA

Table 1: A synthetic CDR data sample with fictive UUID, date-time and TID data, for illustration purpose .

TID Latitude Longitude
6776554S3449 46.291311 17.366325
777865354435 46.282342 17.357244
677655453449 46.366745 17.364112

Table 2: A synthetic CR data sample with fictive TID, Lat-
itude and Longitude data for illustration purpose.

First of all information about the Hungarian country
borders have been extracted, then the data regarding only
highways has been kept obtaining a .json file containing
informations about each highway divided in several seg-
ments, where each segment contains information describ-
ing a small section of the highway (e.g.: name, type, speed
limit) and its location. The length of each highway’s sec-
tion depends on the topography of the area, the density of
the population and the radio-technology of the cell tow-
ers of the operator. The outcome of this phase, i.e. the
detected borders, can be observed in the Figure 6.

Detecting Relevant Towers In order to monitor the high-
ways infrastructure traffic and exclude irrelevant informa-
tion from the data model an additional filtering and select-
ing step has been performed. After this phase, only the
relevant towers that have a strict correlation with the high-
ways infrastructure have been kept.

The density of the cell tower placement and its spatial
characteristics represent a crucial issue in terms of space-
resolution within the developed monitoring system. Pro-
vided the mostly flat characteristics of the Hungarian land-
scape, is possible to assume that the cell towers displace-
ment is mostly not conditioned by the topographic proper-
ties of the surrounding areas but rather follows the density
of the population over the whole territory. This character-
istic of the cell towers placement is due to several factors
such as scalability, laws of physics and signal processing
theory. Figure 1 illustrates the density of the city of Bu-
dapest and its east country side area from which it is pos-
sible to observe that in rural areas cell towers are placed
close to the highway in order to provide the radio-signal to
travelers.

In order to detect cell towers which lead to the crowded-
ness status of that specific section of the highway, an ad-
hoc algorithm have been developed based on a QuadTree
[1] data structure. The generated tree contains all the co-
ordinates of the cell towers that are listed in the CR data.
Then, for every highway section the closest tower cell has
been found querying the tree structure. After this process,

Figure 1: Density of cell towers for Budapest Urban and
Eastern Rural Area, an illustrative example.

Figure 2: Relevant towers identification and towers com-
petence attribution, an illustrative example.

as shown in Figure 2, each highway section is linked to a
specific cell tower while all the towers not related with the
highways will not be considered by the framework while
processing.

3 The System Architecture

The framework has its roots in several components, i.e. the
following data structures (called dictionaries, according to
Python notation) and logical units.

3.1 Data Structures

Relevant Towers Dictionary (RTD) RTD is one of the
main data structure on which most of the others are based
on. In fact the RTD represents an HashMap having as keys
the identifiers (TID, see Table 2) of all the relevant towers
and as values the geographical coordinates of given towers
as strings. RTD is the result of the module for detection of
relevant towers, described above. This dictionary remains
constant in the framework and changes only if there are
changes in geographical locations of cell towers such that
a new tower is placed near the highways, for example.



User at Relevant Towers Dictionary (URTD) URTD is
a HashMap and it has as keys all the UUIDs (Unique User
IDs, see Table 1) of the users whose previous logs were
triggered by relevant towers, namely, those logs who had
their TID appearing in the RTD keys, and, as values the
TID of the tower the given user has been related to for the
last time. At the startup of the system, this data structure is
empty and at the beginning of a new day, due to the UUID
re-anonymization on a daily basis, it is reinitialized.

Tower ID Counter Dictionary (TIDCD) TIDCD is a
HashMap and it has as keys (TIDs) all the relevant towers
while it has as values counters representing the number of
users whose last log have been related to that specific TID.

3.2 The Status Maintainer Module (SMM)

As soon as a log event is triggered, the SMM is delegated
to keep track of the last location of the user (attaching to
him/her the proper TID in the URTD) and increases or de-
creases the counter of the proper TID within the TIDCD
according to the situation. This module acts as a supervi-
sor moving the subscribers from a tower to another, keep-
ing the model up to date with the information provided by
the event logs. SMM is delegated to interpret and take de-
cisions based on the information provided from the logs
with the following functionality:

As soon as the application is started, both the URTD and
the TIDCD Hash Maps are empty. As the first incoming
log having a TID present in the RTD key-set is processed,
the SMM will fill the URTD with the UUID as key and the
TID as value, then, it will initialize the counter of the spe-
cific TID key within the TIDCD to 1. If a second log from
the same user will come but, this time, with a different and
relevant TID then the counter of the old TID (the last “lo-
cation” of the user) within the TIDCD will be decreased
by one unit and suddenly the corresponding URTD’s value
will be updated to the actual TID inferred from the log
querying the RTD and, finally, the corresponding TIDCD
value (for the actual TID the user is connected to) will be
increased. In the last case, if the subscriber’s handset will
trigger a log which is not related to a relevant tower, the
counter of the old TID within the TIDCD will be decreased
by one and the key within the URTD corresponding to the
specific UUID will be removed (the user has left the set
of towers delegated to monitor the highways mobility sta-
tus). All the event logs (records) containing a non-relevant
TID (user is not on a highway) and UUID not stored in
URTD (user was not on a highway before) are immedi-
ately discarded. Figure 3 provides an illustration of the
SMM logic.

3.3 The Evaluator Module (EM)

The EM is the core module of the framework, which is
responsible for classifying the status of the load of a spe-

cific highway segment. It uses as an evaluation model de-
scribed in the next section where the number of classes is
determined by a parameter.

The EM module is triggered every time a time frame
(a parameter of the framework) expires. At this point it
is time to evaluate the status of the whole system. At this
stage the EM iterates over all the TIDCD, computes all the
means and standard deviations using the past data neces-
sary to evaluate the actual status of all the relevant TIDs
and then finally classifies every segment of a given high-
way into one of the predefined classes. For example, in
case of 10 classes, the class 5-6 corresponds to normal
traffic, 7-8 to higher while 9-10 to very high traffic, 3-4
to lower and 1-2 to very low traffic on a given segment of
the highway.

3.4 The Notification Delegate Module (NDM)

The NDM is the part of the framework responsible to con-
stantly collect the result of the EM and update the clients
about the highways status sending all the needed informa-
tions as a json payload. While this process takes place,
an ID conversion is performed. In fact, the back-end and
the front-end of the framework, due to security reasons,
do not share the same internal IDs for representing the
TIDs. Once finished, the control is passed to the Noti-
fication Delegate Module responsible for communicating
with the client (described below).

4 Classification of the Traffic Load

In order to classify the load of a segment of highway, one
should consider the past data as a reference for the eval-
uation of the new entries. Given the topographic features
of the Hungarian landscape it is expected that the activity
of cell towers close to the highway have a low static noise
(in [6] authors highlights that systems relying on cell tele-
com logs for traffic estimations within urban areas could
suffer high loss of precision due to event logs triggered by
non-traveling users). In fact, in this specific case the ma-
jority of the event logs are generated mostly by travelers
and it is easily possible to observe that the number of trav-
elers in a given time-range tend to be similar for different
week-days.

Provided the latter observation, it is possible to build a
model such that in order to classify the load of a specific
road segment in a precise time-range of the day (e.g.: be-
tween 12:00 and 12:15) compares the value to be classified
against the values of load within the same time range of the
previous days. Here, a sort of seasonality of the traffic has
to be considered, e.g. there is more heavier load during the
rush hours while less traffic at nights.

An other, interesting phenomenon is that sometimes a
traffic anomaly can become normal with time. For ex-
ample, consider a longer construction work on a highway
causing the close of some parts (e.g. lanes) of the road. In



Figure 3: The logic diagram of the Status Maintainer Module

the time of its appearance, since it is sudden for the traf-
fic, it is considered an anomaly and results in traffic jams.
However, with time, the traffic normalizes such that peo-
ple get used to it (e.g. start using alternative routes) and
the notion of heavy load changes.

All of the above observations lead to the straightforward
use of time-series for representing the given problem of
traffic load monitoring and classification.

4.1 Utilizing Breakpoints

The proposed model for classification of traffic load in var-
ious highway segments utilizes well-known concepts in
Symbolic Aggregate Approximation (SAX) of time series
[2, 3]. SAX makes use of Piecewise Aggregate Approx-
imation (PAA), a computationally very cheap method [4]
since it operates with arithmetic mean and standard devi-
ation, both very cheap operations.

SAX allows a time series of arbitrary length n to be re-
duced to a string of arbitrary length w, (w � n) with the
alphabet size a > 2 (the number of letters used to represent
the time-series using SAX). In this process the data is di-
vided into w equal sized “frames”. The mean value of each
frame is calculated and a vector of these values becomes a
reduced representation. For further details, refer to [2, 3].

Assuming that the distribution of the values over the
time-series follows a normal distribution, it is possible
to subdivide the time-series into so called breakpoints B.
Breakpoints are a sorted list of numbers B= (β1, · · · ,βa−1)
such that the area under a N(0,1) Gaussian curve from β1
to βi+1 = 1/a where β0 and βa are defined as −∞ and +∞,
respectively. The advantage of utilizing breakpoints is that

they do not need further computation but may be deter-
mined by simply looking them up in a statistical table, as
illustrated in the table 3 containing the breakpoints divid-
ing a Gaussian distribution in an arbitrary number (from 3
to 10) of regions.

The final key-concept of the proposed model is that it
does not represent the data in the past with a SAX repre-
sentation, however the system classifies a new entry using
the breakpoints generated making use of the data recorded
in past in a SAX-like fashion just performing a lookup on
a small table.

An efficient way to detect anomalies in time series is
that it is enough to compare the breakpoint determined for
the actual time frame to the breakpoints determined for
the corresponding time frame(s) in the past, for example,
the same time of the day before or the same time of the
same day a week before, etc. Depending on the number
of classes to which the framework should classify the new
entry in the dataset, the right column of the statistical table
has to be implemented in the system and then looked up.
In order to give a wider freedom of tuning, this value has
been kept as a parameter of the framework.

Historical Data Representation The data from the past
are stored in an efficient-to-load binary format making use
of Python’s Pickle module. Files are stored in a daily for-
mat in the form of a HashMap of arrays having as keys the
TIDs. Once loaded, the files are reshaped in MxN matri-
ces, one for each TID, where M is the number of time-
frames and N represents the number of days to consider in
the past. All the tests in this research were performed set-
ting the time frames at 15 minutes and considering the last



a
βi 3 4 5 6 7 8 9 10
β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.43 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Table 3: Statistical table for determining the values of breakpoints

15 days in the past. This representation have been chosen
because once the system is running in real-time with a con-
tinuous data-stream then it is easy to shift the matrix data
and recompute all the means and standard deviations effi-
ciently. This shifting and re-computation operation would
be performed once per day at a given time (e.g. midnight)
exactly when the system is subject of a reinitialization or
when the log re-anonymization process is performed.

5 Experiments

Given the lack of open systems providing precise infor-
mation about the traffic flows over time we validated the
system over specific traffic congestions. The goal of the
experiment is to validate the method looking for a correla-
tion between the highways status and the telecommuni-
cation infrastructure. In order to validate the results of
the developed system authors asked the collaboration of
utinform3, a department of Magyar Közút Nonprofit Zrt.
whose responsibility is to collect information and moni-
toring the roads traffic. They gather information from het-
erogeneous data sources: the employees of the company
monitoring the highways, the county directorates and the
engineering departments employees. Utinform, in order to
cross-validate the crowd sourced data sets, is also coop-
erating with institutions such as police, disaster manage-
ment, and public transport which have their own feed to
post their information to the system. Furthermore, the sys-
tem has a crowd source interface, where people can submit
experienced traffic anomalies. The goal of utinform is to
provide fast and validated traffic information to the drivers
in whole Hungary.

The data received include information regarding traffic
congestions on all the Hungarian highways. The dataset
contained data from October the 1st to October the 14th,
2016 regarding congestions with a length of at least 3 kilo-
meters. Table 4 shows the validation data and the results
of the proposed framework.

Setting the number of classes to 10. We define a cor-
rect detection when there is at least 50% overlap (in terms

3http://utinform.hu/

of time) over the validation data with traffic classification
level equal to 9 or 10. With this setup eleven out of four-
teen (79%) congestions have been successfully detected.
The time series have been quantized with time windows
of 15 minutes, thus during the testing phase the classifica-
tion takes place each fifteen minutes.

It is interesting to note that the majority of the anoma-
lies are detected earlier than the data provided by utinform.
This can be a proof that the proposed solution is able to
spot congestions when these are shorter than three kilome-
ters. The outcome is similar for what concerns the end of
the congestions, in this case the proposed solution tends to
detect the end of an anomaly later than the validation data
set. Three congestions out of fourteen have not been de-
tected, however this can be due to at least two reasons: the
telecom operator (because of industrial secrecy concerns)
did not provide to us any detail regarding the range of an-
tennas or their direction, thus, there might be a chance of
inaccuracies along the phase of matching the geographi-
cal maps with the towers’ positions in order to define the
competence of each tower w.r.t. the highways segments.
Another reason could be due to data inconsistencies. In
fact, as mentioned in Section 2, one third of the data have
been dropped.

Figure 4 represents the classification value over time
slices of fifteen minutes for the highway segment suffer-
ing for the congestion described in Table 4 on row three.
The red (in black and white print: the dark) vertical line
represents the time slot when the anomaly is detected on
the validation set. Here, a congestion is defined when the
classification values are equal or greater than 9. On the
other end, Figure 5 represents the number of handsets (an
estimation of the number of travelers) involved in the con-
gestion.

The application framework have been completely devel-
oped in Python 3.6 and it have been demonstrated to be
very efficient. Although the system is designed to work
on-line receiving a stream of data in real-time, in order
to measure the performances of the model, we decided to
exclude the streaming and the networking module, finally
we tested the model in off-line mode. One log per time
is read and suddenly processed. With this approach we



Cong. Start Time Cong. End Time Det. Start Time Det. End Time
11:00 11:40 10:30 12:15
06:35 07:45 07:15 07:45
09:30 22:10 09:00 00:00
17:55 09:05 none none
06:52 07:30 07:00 08:15
14:50 16:50 16:45 17:30
08:40 18:10 08:15 18:45
14:00 17:10 14:45 19:25
10:00 11:20 08:45 13:45
17:23 20:15 16:15 20:00
07:20 08:50 07:30 10:30
02:55 04:40 none none
15:00 16:00 15:15 16:15
06:45 07:25 none none

Table 4: Experimental Results indicating congestion (Cong.) start and end times as well as detection (Det.) start and end
times.

Figure 4: Classification values over time slices and the
time of a congestion (red/dark line), an illustrative exam-
ple.

maintained the architectural design of the framework and
no-delay straming process has emulated while at the same
time avoiding networking related delays. Running the ap-
plication on an Intel i7 6700K with 16GB of DDR4 RAM,
on average, manages to process the logs for an entire day
within less than 10 minutes with a peak of RAM con-
sumption of 32MB. Furthermore, the application frame-
work have been deployed on a Raspberry Pi 3 where
the running time needed to process an entire set of logs
representing one day is in around 1 hour, in average.

5.1 Visualization

First the communication interface need to be mentioned
between the back end and the front end part. The front end

Figure 5: Number of handsets involved in a congestion and
the time of the congestion (red/dark line), an illustrative
example.

is a web based application, it uses HTML and JavaScript,
which communications with the Python back end through
Web Sockets with .json files. At the initialization stage,
first the front end asks the back end for mapping of tower
IDs and highway sections, as it was mentioned before at
the geographic data section. After the initial step, the back
end is sending messages which the front end processes and
shows on the map. These messages are json files, con-
taining a list of objects with three attributes: ID, value,
anomaly. The ID stands for the tower IDs and the value is
an int from 0 to 9 showing the traffic load on that segment,
and the anomaly flag is giving information that this value
is the expected for the given time window or it is deviating
from the usual traffic load on that area. In order to keep the
low cost functionality of the system, the visualization had



to be carefully built as well. An open-source JavaScript
library, LeafletJS4 was used to place layers on the par-
ticular highway segments. This library has relatively low
cost of handling layers and as it is expected from an ap-
plication where the traffic load is constantly changing this
was a critical feature. Each layer is a colored visualization
of the value given to the particular highway section, an ex-
ample can be seen on the Figure 6, where the spectrum is
from blue to red, representing the low to high traffic load.

Figure 6: The traffic load visualized on the highway seg-
ments, an illustrative example.

6 Conclusions

A lightweight traffic monitoring and traffic jam detec-
tion framework has been presented in this paper based on
HashMap data structures and methods for breakpoint de-
tection well-known in time series classification. The used
concepts require cheap computation and, basically, mini-
mal tuning phase opposite to the case of tuning the hyper-
parameters of machine learning algorithms. The few pa-
rameters of the framework such that the time window or
time frames as well as the number of breakpoints can be
set according to an available domain knowledge or user
expertise. However, to avoid false positives, it is recom-
mended to tune the presented framework before imple-
menting it into a production environment.

The SAX representation had already been used as a tool
for time series classification. However, the proposed dis-
cretization procedure is unique in that it uses an interme-
diate representation between the raw time series and the
symbolic strings. Furthermore the aim is not to classify
full time series as in [5] but rather to classify new incom-
ing single values.

The presented framework was tested using real data.
Due to the sensitive nature of the project the presented
framework was developed within, the authors cannot dis-
close the source code nor the data used in experiments, in
this time. Experiments show that the proposed framework
is promising and worth further development and adapta-
tion to other use-case scenarios.

4http://leafletjs.com
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