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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Implementation of recommendation techniques in smart city scenarios face various chal-

lenges arising from the fact that such a recommender is a part of an dynamic environment

in which several services are collaborating.

The thesis is focusing on the use-case of a tourist recommender system representing

a complex scenario: Recommendations should be context-aware, i.e. to get along with

the fully or partially observable, or, sometimes unobservable circumstances influencing the

choice of the user such as the time, weather, companion, interests, etc. For such, information

from several sources need to be acquired, cleaned, updated and integrated to the system.

An interesting source of information are data provided by Magyar Telekom, the industrial

partner of the thesis, within the joint project entitled "Telekom Open City Services" from

which, for example, crowds in the city can be detected. Moreover, recommendations should

be privacy-preserving, an issue becoming more and more important in this area.

The first step of the progress is to identify open data sources about events and point of

interests, and if it is possible then do it in a semi-automatic manner. The most important

part of the thesis is to create a measurement model, which helps data-scientists to

evaluate data sources, based on resources in the topic. Despite the model itself is focusing on

data sources for event recommender systems, with some modifications it can be applicable

on other data crawling purposes as well.

With the application model for measurement, we can see what data sources are worth to

put resources (computing power) into. Crawler / Scrapper engines (eg. import.io, Norcorex

collector) helps, to crawl the data from the approved sources by the model. There are more

options to store our crawled data, we can store it in comma separated value (CSV) files, or

in relational/non-relational databases, we have to choose between the options according to

the usage of the data, so the next step of the thesis is to find out what is the most suitable

for the preprocessing.
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CHAPTER 1. INTRODUCTION

Research questions:

• Can relevant open data sources be identified in a semi-automatic manner?

• How to measure the usability of an open data source in a tourist recommender

system?

• Which methods are more suitable for pre-processing and integration of the acquired

data into the tourist recommender system.

• How can the data provided by Magyar Telekom be utilized for tourist recommenda-

tion?

The associated research objectives to these research questions are the following:

• Identify available open data sources (e.g. websites of museums, galleries, information

centers as well as other, contextual, data sources) and propose measures for their

evaluation (e.g. availability, recency and "openness") with relation to their usability

in the tourist recommender system.

• Provide a SWOT analysis of the use of data provided by Magyar Telekom in a tourist

recommender system.

• Analyse the possibilities of semi-automatic identification of relevant data sources and

develop techniques for pre-processing (e.g. cleaning or missing value imputation) and

integration (e.g. de-duplication and aggregation of records) of data from the identified

data sources into the tourist recommender framework.

Answering these research questions will help to build the data layer of the planned

tourist recommender framework. The thesis is, in fact, preparing the ground for a more

thorough research in recommender systems to be pursued within a PhD study. Nevertheless,

the achieved results within the thesis will be valuable on their own, though, fostering the

ground for any further research in this direction.
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Chapter 2

State-of-the-art

As Andreas Schulz, Jorg Lassig mentions in their study [SLG16] mentions, WIEN [Kus97],

XWRAP [LPH], STALKER [IMK98], NoDoSe [Ade98] and BYU [DWES99] is a selection

of the wll-known often-quoted solutions for Web Data Extraction (WDE). In the past few

years new approaches were published like FiVaTech [KC12], FiVaTech2 [CHCK10], NEXIR

[SSH13], AutoRM [SSH15] and OXPath [TFS11]. The last one is a wrapper language which

has a optimized syntax for making the description of the WDE task easier. It also supports

the moder Javascript transitions or CSS3 transitions, most of the modern Document Object

Model (DOM) modification triggers as well and it can recognize Drag-and-Drop features.

Pagination is a problem from the dynamic web pages, for that link extraction is needed.

OXPath and lot more solutions can handle that problem already. Unfortunately to write

OXPath expressions and maintain them is costly, and involves much effort, and because of

that it is not scaling well. DIADEM [TFW12] utilized OXPath to give wrapper generators,

which is a step closer to the right solution but they do not provider deep insight into it.

An other wrapper language has been created for covering the whole WDE process, with

pagination, data extraction and integration, it’s called NEXIR. The problem of scaling is

not solved with wrapper languages either. FiVaTech and its improved version FiVaTech2

provide a page-level extraction approach which utilizes different DOM-based information

to build up a wrapper. FiVaTech therefore utilizes tree matching, tree alignment and

mining techniques to identify a template from a set of pages. FiVaTech2 improves the

node recognition by including node specific features, such as visual information, DOM

tree information, HTML tag contents, id-s and classes. It is clearly visible, that a ranking

system is needed to be able to differentiate between solutions, ARIEX [PJS16] is a defined

framework for ranking data and information extractors and solves a specific problem, with

comparing different approaches. Other missing approach is to make ranking between data

sources not the approaches, when we talk about scalability until we do not have a general
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solution for the problem, we can limit the scaling by finding the way of ranking the sources

and leave out the unnecessary ones. There is no such publication or solution available for

the public, so we take this approach in this research. For reaching the results, a bipartite

graph can be used and social network analysis methods on it. The importance of centrality

measures and the methods are discussed in [PB13].
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Chapter 3

Web Crawling

All Data Science processes require the necessary amount of data, to be able to work with. If

the required data is not available for us, then our first task of the research is to collect it. The

collection of the data can be done in many different ways, we can build our own applications,

which will store the information in databases, or we can buy data from different companies

and current applications or there are accessible open data sources which are often useful

and enough for processes, but there is an other way to get the data from the Internet. Web

crawlers are Internet bots, which are semantically browsing the World Wide Web. Most

of the cases their purpose is to index websites, sometimes those crawlers are called web

spiders, and the indexing method is called spidering. With web crawlers we are able to get

the necessary data semi-automatically.

3.1 Crawlers Strategy

A crawler is usually a multi-threaded downloader, which gets the URL-s as an input (what

to crawl) and it will put these inputs to a queue. Most of the time they have their own

scheduler, which decide the order of the process. Good crawlers have to consider cost

effectiveness. Under the cost we mean storage and time consumption. The responsible for

the effectiveness is the Scheduler. As [Cas04] discussing in his PhD thesis, the most used

cost functions are freshness and age.

Freshness is a binary function that measures whether the the downloaded local copy

is accurate according to the live page. The freshness of a page p in the repository at time

t is defined as:

Fp(t) =

1, if p is equal to the local copy at time t

0, otherwise
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Age is a measure, which indicates how outdated the downloaded copy is. The age of a

page p in the repository, at time t is defined as:

Ap(t) =

0, if p is not modified at time t

t - modification time of p, otherwise

The evolution of these two quantities is depicted in Figure 2.1

Figure 3.1: Evolution of freshness and age with time

For building up the strategy, Cho and Garcia-Molina [CGM03] were studying two re-

visiting policies: The Uniform policy and the Proportional policy. The first one does

not consider freshness changes, it visits all the pages with the same frequency. However the

second, Proportional policy, changes the frequency of re-visiting according to how often

the page losing its freshness. The order of visiting the pages does not matter in either of

the cases, it can take randomly or in a fixed order as well.

Their result was surprising: they proved that, in terms of average freshness, the Uniform

policy is much better performing than the Proportional policy. The reason behind that is,

when it finds a page which changes too often, it re-visits it too fast and wont be able to

keep a fresh copy of the page. "To improve freshness, we should penalize the elements that

change too often" [CGM03].
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3.2 Architecture of Crawlers

As a master student in the Software and Service Architecture major, I cannot leave out

the architecture part, I explain a bit the most common way of crawlers working and show

it on a physical view on the Figure 2.2

Figure 3.2: Architecture of a Web Crawler

Most of the crawlers has a Queue for the URLs, which it is supposed to download,

while the initial URLs are coming as an input from the user. The reason I mentioned

"initial" input is that the more advanced crawlers has link extractor function which maps

each link in the site and in this way, it can download more pages from it. Of course these

link extractors have to have a deepness limit, given by the user, which tells the crawler to

stop extracting links after it reached the deepness which were set. The deepness limit is

important because otherwise it could run into an endless loop, or it could find new link on

the new extracted sites as well and it would be an endless extraction. So after the queue

has been set up, it gives it to the Scheduler what we already discussed in the strategy

section, what is, deciding the order of the URLs to crawl according to the policy it uses.

The next step is a Multi-threaded downloader, which makes the HTTP GET calls, indexes

the results and saves them into a given format. These formats can be different: it can be

downloaded as HTML which doesn’t need any processing because the HTTP GET answers
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with an HTML file, it can save the result of given indexes like pictures or dates or titles

and transform these data into a Comma-separated values (CSV) document or it can be

saved as objects into a JavaScript Object Notation (JSON) for easier further processing,

and a lot of other formats. When it finished with the task of one URL, then it updates

the age and the freshness indicators, and recalculates the re-visiting frequency. After all of

these steps the engine puts back the URL into the queue

3.3 Semi-automatic crawling

Our recommender system is an event recommender for tourists and for this reason we

needed as much event data as we can find with a reasonable resource sacrifice. Unfortu-

nately we could not find a data feed, which would satisfy our needs. Therefore we decided

to use already made crawlers for downloading event data from their publishers websites.

In the beginning of my research I was focusing on the question, whether the crawler can

identify automatically URLs which are important for an event recommender system? Un-

fortunately not, because the world wide web as we know is unstructured, there isn’t any

protocol how the HTML have to look like from the code perspective when the creator

wants to show any kind of information. There are semi-automatic solutions where we can

use text mining to identify patterns, but the algorithm still have to be supervised. The

reason behind is that sometimes developers put dates in the same "div" (HTML container)

with texts, and the system cannot always recognize differences. An example later on will be

shown. For these semi-automatic wrappers two things have to be identified clearly: Tokens

of interest on the page and the nesting hierarchy within sections. The first one is mostly

focusing on headers, because it helps to separate sections from each other. Usually headers

are the start of the next section, after it is separated to sections. We can see an example

heuristic behind token identification on pages on Figure 2.3. Then the script has to find

the hierarchy within them. For example when it identifies an event, it has to find the title,

the date and start time, the location and probably the description as well. When the page

is broken into sections and the hierarchy is mapped as well, then it has to use some kind

of parser which is breaking the containers and the content of them into data which can

be stored or committed into databases. In the next section I will show the crawlers, that I

was using to gathering the data for the further research.
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Figure 3.3: Heuristics for identifying tokens when structuring a page Source: [AK97]

3.4 Crawlers used

We could use the Google crawler or World Wide Web Worm, or a lot of other famous

indexer engines, but for us it isn’t necessary to download everything from pages. What

we was aiming for is to collect event data from various sources. First we had to find the

URLs what we wanted to crawl. It was interesting to see, how different the structures

of event data are. Museum pages sometimes has list of events, but it often happens that

they are generating the events with Asynchronous JavaScript And XML (AJAX) calls

with interaction with the users. Those AJAX based generations are almost impossible

to crawl, because we have to tell to the script what exactly to do to get the content,

and we would need to set it up for every different source which has this kind of content

generation. Concerts and other events sometimes have their own page or they are published

on the organizer’s site and even on the band or artist’s site. The richest content source

is Facebook. Most of clubs, restaurants, museums and other organizations are posting

their events frequently there, and that provides us more information about the events, for

example number of attendees or interested count, and usually more detailed description.

I found a really useful tool called Import.io, which is downloading the given URLs and

finding the possible tokens of interests on the page. Unfortunately it doesn’t have link

extractor so we have to set all the pages of a listing site by hand, and we can modify the

tokens of interests manually for our best result. For Facebook events it wouldn’t be useful,

thus I created collector classes for the Norconex collector to adapt it according to our need.

I will explain them in more depth in the next two subsections.

9
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3.4.1 Import.io

As it was mentioned before Import.io is an online page extractor, which allows us to define

the fields that we are looking for and it will crawl down the data for us. The result can

be exported into JSON or CSV. It has a freemium model, until 5000 page downloads per

set time is free, although if we would like to use the extractor scheduler, that’s already in

the premium package. We can see on the Figure 2.4 the dashboard after the user has been

logged in. In the left sidebar we can see the new extractor button which will lead us to the

next step, but I will get back to that soon. Under that button we can see our previously

created extractors and we can even search between them. The previously mentioned picture

shows, how it looks like, when we choose one of the extractors. We can set multiple URLs

to it and we can even use a URL generator which help us to generate URLs with variables.

As I showed on the picture the three already set URLs have a page number variable with

(1,2,3) as values.

Figure 3.4: Import.io dashboard user interface

We also has the basic functions in this page, like download result, edit extractor, du-

plicate it or delete it. There is an option to get email notifications when our downloading

finishes. In the free version we can take a look at the 5 historical downloads from each

extractor, which is useful for comparison and calculate the freshness and age from it. In

that way we can set the crawling frequency optimal.

When we call the new extractor function, it asks for an URL to crawl, and it is making

the assumptions what containers should it extracts from. After a short amount of time,

when it scanned the page’s HTML source, it gives back the result as we can see through an

10
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example on Figure 2.5. As we can see it maps the data into columns. The column names

are already edited on this picture.

In this phase we can set regular expressions (preprocessing), or default values for the

attributes. We can set new columns or delete those that we do not need.

Figure 3.5: Import.io dashboard user interface

The most relevant part is the edit the mapping, what we can reach from the previous

phase’s Edit tab on the top. It is the most relevant because this is the phase, in which we

need the human interaction to evaluate the mapping. According to my experiments it is

pretty uncommon to get the information we need in the right format. It isn’t a mistake

of the software, it is the problem of the non semantic world wide web. There is not any

protocol how the web developer should represent an event on the web, no HTML container

id restrictions or class restrictions are applied. Thus there is no clear universal solution

for the extractor what to put to result. At this point when I was experimenting with

this and the other crawlers, I realized why isn’t there any already done, ready to use

applications, which just gets the parameters, and it extracts new links and finds the URLs

in an automatic way without any supervision. On the Figure 2.6 we can see how the edit

functionality works. We can see on the left side the chosen column for editing, and the

HTML page behind. The thin border is the container of which the script thinks is the

important one and the thicker borders around the dates are picked to extract as a column

value. We can click on the title and it will highlight the same containers which has the

same class and it will map the information from those containers to the attributes of the

column.

The problem is that these containers are usually not separated well and can hold a lot

of irrelevant information. In our example, the text in the brackets are not relevant for us,

11
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or we could see in Figure 2.5 that the Price wasn’t really well crawled.

It has a function to train the mapping engine on other URLs. It is a supervised training

as well but it can be the right solution later on when the software grows.

Figure 3.6: Import.io dashboard user interface

3.4.2 Norconex HTTP Collector

Norconex HTTP Collector is a useful tool to crawl pages, it knows all the features that I

mentioned in the architecture part and even more, I will go into crawlers in more depth,

through this collector’s architecture. The software has been built in JAVA, it is running on

it’s own and thanks to the JAVA language it runs on every operation system or platform

that supports it.

Figure 3.7: Web Crawler’s first phase Source: https://www.norconex.com/
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We can see on the Figure 2.7, on a flow diagram the part of the architecture where

the user defined URLs get evaluated and put into the queue, from where the scheduler

decides the order of crawling. This part contains the link extraction as well, which has the

predefined limits, for example the depth limit, what means how deep shell the script go

into the page, what is useful to set to avoid unnecessary resource waste. Other predefined

values are the reference filters, where we can set avoidable links for example, if we are not

interested in blogs then we can set a regular expression which checks if the URL contains

a blog or not and if not, it will check the other restrictions and if all are passed then it will

crawl the page. For the reason the crawler is identified as a robot by pages and servers,

we have to check if the page allows it in the robots.txt file which is used to filter robots

because robot calls can overload slower servers easily, but it can make overloads on bigger

ones as well. If the page is using amazon cloud services, then it would cost much more to

pay the peak overload computational time or income cost, opposite to the case when the

server is not like amazon services and it shuts down when the overload comes.

An example of robots.txt look like this for an http://www.example.com/ site:

# robots.txt for http://www.example.com/

User-agent: *

Disallow: /cyberworld/map/ # This is an infinite virtual URL space

Disallow: /tmp/ # these will soon disappear

Disallow: /foo.html

This robots.txt shows that we can disallow pages to visit for robots in order to avoid the

high page load. If the file would contain a "Disallow: / " line that would indicate the no

robots on this site rule. If all of these statements are passed then the script is normalizing

the URL before it is submitting to the queue.

The next phase is the more advanced one, when the scheduler have to make a lot of

decisions. The first step is to check if the URL has been crawled already or not and if yes,

then check the freshness of the document. When the current document is fresh according

to our definition of freshness, then the crawler rejects the call and goes further with the

next one in the queue. If the current copy is not considered fresh according to our filters,

then the algorithm calculates the delay, which in Norconex HTTP Collector’s case works

with the politeness policy ( as Koster [Kos93] mentioned robots are useful, but they have

a price for the general community, they create bigger page load time, so Politeness policy

have been introduced, which means that if it takes t time to download a page, then the

script waits constant x t time before the next page download).

13
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When the downloading of a page starts, the algorithm checks if the headers are fetch-

able. If not, then it jumps straight to the fetching document part, but if the headers are

fetch-able, then it checks step by step if the download was successful or not. If the filter

accepted the meta data, or if it was canonical or not, it calculates the meta sum which is

checking if the structure changed or not. When any of the answers of those conditions is

false, then it gives a rejected answer and skips the document. After these steps the page

download starts with the link extraction and other conditions (all of these conditions and

the whole architecture is visible on a flow diagram on the Figure 2.8).

Algorithm 1 The Scheduler Algorithm
1: procedure sheduler(m = (mi1 ,mi2 , . . . ,mip)) . list of URLs

2: for all a ∈ m do

3: if recrawl(a) then

4: do some processing

5: else

6: return Rejected

7: end if

8: if HTTPheaderfatched(a) then

9: extractHeaders(a)

10: end if

11: fetchDocument(a)

12: if downloadSuccess(a) then

13: saveDocument(a)

14: extractDocument(a)

15: commit(a)

16: else

17: return Rejected

18: end if

19: end for

20: end procedure

14
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Figure 3.8: Flow diagram of an advancedWeb Crawler, Source: https://www.norconex.com/
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Chapter 4

Preprocessing

The goal of data preprocessing is to make it more suitable for data mining tasks. In this

chapter I will introduce the basics of preprocessing and how I applied them in the research

to make our crawled data suitable for the evaluation model.

We can group preprocessing approaches into two categories: selecting data objects and

attributes for the analysis and creating or changing them. Both approaches are focusing on

making the data mining more cost efficient and increase the quality of the result according

to the goal of it.

Figure 4.1: Phases of web usage mining, Source: [Kum15]

Preprocessing tasks, most of the time, are tailoring the raw data to a suitable form

for the information what we need to mine out of it. For example, if one field has the 365

days of the year but we know, that in the end we will create analysis for the months of

the year, than we can aggregate those days into months and don’t store the days anymore,
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what will decrease the unnecessary computational cost. When we do preprocessing we have

to keep in mind, that sometimes less is more. It is nice to have exact information about

measurements, but if we know we won’t use them and we have to make one more step

in the analysis part to group them or make them more general, then it would be more

suitable for us to store the already generalized data.

Data preprocessing is unavoidable, because real world data is often inconsistent and

incomplete or it has a lack of certain behavior or trend and is likely to contain many errors.

The most common approaches of preprocessing are:

• Aggregation

• Dimension reduction

• Feature creation / Feature subset selection

• Sampling

• Variable transformation

• Discretization and binarization

In the next few sections, I will explain how I used some of these approaches on the event

raw data, I crawled down in the previously explained way.

4.1 Aggregation

Aggregation is the approach why the sometimes less is more sentence get sense, because

the key task of aggregation is to combine two ore more objects into a single object. Con-

sider a data set of consisting transactions (data objects) recording daily sales of products in

various store location, for different days over the year. One way to aggregate these transac-

tions is to replace all the transactions of a single store with a single storewide transaction.

This would reduce the hundreds or thousands of transactions that occur daily at a specific

store to a single daily transaction and the number of data objects would be reduced to the

number of stores. [TSK05]

What is motivating us to use aggregation? First, if the data set is smaller it results in

less computational cost, which leads us to the opportunity to use heavier, more costly data

mining algorithms. It can also provide us higher level view of the data. It is also important

that the grouped attributes are often more stable than the individual ones. This statement

reflects the statistical fact that aggregated quantities. such as average or totals, have less

variability than the individual objects being aggregated. [TSK05].
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In our case, one of the aggregation example was the geolocation. Couple of databases

or applications for social network analysis and visualization tools require geo_point format

and the different sources gives us the location differently. For example, Facebook provides

location of events with latitude and longitude and for that case we need to use substring

methods and combine the two attribute into one geo_point format. Some of our data

sources just give us the exact address, and in that case we need to change them into

coordinates. Fortunately, there are already APIs and services which help us doing this

task, store data in the correct suitable format. For data mining and further preprocessing

techniques there is no required format, the main point is to transform the same attributes

into a consistent and understandable format for the further used scripts. As we can see on

Figure 3.2 geolocation can be hashed into areas. In our case, for the evaluation model this

can give important information, for example we can calculate the standard deviation of

the events in the areas and that can give important knowledge to the recommender engine

as well.

Figure 4.2: Locational data aggregated into hash areas in Budapest

Other important aggregation task was to create and store a list of data sources, because
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we are downloading events and all of them are storing their source. However, it is more

suitable for couple of analysis processes to have just separately stored those datasources.

In the evaluation model, I will talk about further research about location of events, which

can make difference in the importance for a recommender engine. Locational evaluation

method can result in that the exact location does not make that much difference in source

evaluation, but the districts or areas do matter. Thus we need to aggregate those locations

into districts or areas and store those rather than the exact geolocational data. This type

of aggregations like the date-time and the location grouping are commonly used in Online

Analytical Processing (OLAP). OLAP technology has been defined as the ability to achieve

“fast access to shared multidimensional information.” OLAP technology’s ability creates

very fast aggregations and calculations of underlying data sets, what helps decision making.

4.2 Dimension reduction

Dimensions in a dataset means the number of attributes in it. So, if the dataset includes

every information of the transaction as an example then probably the dimensions are really

high. There are many advantages of lower dimensional datasets, but the key advantage is

that data mining algorithms work better if the dimensionality is lower. Of course, dimen-

sionality reduction can eliminate noise and irrelevant attributes but it can lead into the

Curse of Dimensionality.

"The Curse of Dimensionality refers to the phenomenon that many types of data

analysis become significantly harder as the dimensionality of the data increases.Specifically,as

dimensionality increases,the data becomes increasingly sparse in the space that it occupies.

For classification, this can mean that there are not enough data objects to allow the creation

of a model that reliably assigns a class to all possible objects. For clustering, the definitions

of density and the distance between points, which are critical for clustering, become less

meaningful. As a result many clustering and classification algorithms (and other data anal-

ysis algorithms) have trouble with high-dimensional data-reduced classification accuracy and

poor quality clusters. [TSK05]"

Data visualization becomes more easier if there are less attributes to show, and it

is more understandable. Also the computational cost is reduced with the dimensionality

reduction.

The two most commonly used dimension reduction algorithms are Principal Component

Analysis (PCA) and Singular Value Decomposition (SVD). Both are connected to linear
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algebra, PCA works in a way that it is finding new attributes which are linear combinations

of the original ones. As Urška Demšar noted [DHB+13]:

"PCA is one of the most popular dimensionality reduction methods. It is a linear

method, meaning that the transformation between the original data and the new lower di-

mensional representation is a linear projection. Its main purpose is dimensionality reduc-

tion, but it can also be used to explore relationships between variables. Often it is used as a

preprocessing method either for data orthogonalization and eliminating redundancy caused

by variable correlation or for dimensionality reduction, before employing another statistical

method, such as regression or clustering. As principal components (PCs) are orthogonal,

regression and clustering methods can proceed with data independence assured."

PCA was useful for us to find out the correlation coefficients of the principal compo-

nents. If we know which components are not correlated, it should in theory at least tell us

that they contain different information about the events and data sources. In this research

PCA was not used, but in this way we can find out which attributes are not important for

us in the further analysis.

4.3 Sampling

Data science has different reason for sampling than statistics. The motivation is that to

process all the data is too expensive, and on smaller size of data we can run more heavy,

more expensive algorithms. Sampling have to be effective, because if we don’t apply any

rules for sampling we can easily miss information or can get false results. So the sample

have to be representative, which means that it has approximately the same properties

as the original dataset. As an example, the group of tourists are taking four or five point

of interests on a daily trip average, so the sample have to keep that average, because if we

would take a sample where tourists just visiting one or two point of interests, that would be

misleading for the recommender system. We can see the misleading sampling on the Figure

3.3, where the sampling algorithm chooses every third member of the population and as we

can see on the result, it is giving a false result, since we don’t have any white member in

the sample, while in the population we have exactly the same amount of gray member as

white ones and just 2 times more black ones than the other colors. The right result would

be two black and one-one gray and white and then the sample would be representative as

we can see on the Figure 3.4.

The easiest approach is the random sampling which gives exactly the same probability
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Figure 4.3: Getting every third element of the set as a sample

to select an item as a part of he sample. The proper sample size can be difficult to determine,

so adaptive or progressive sampling schemes are sometimes used. These solutions work in

a way that they choose a small size sample and they increase the sample size step by step

and checking if the properties are still changing or not. It is a good solution for clustering,

while increasing the sample size and checking the last iterations if the size of clusters still

changed or not, and when it becomes constant then we do not need to increase the size

anymore. In our experiment we collected 2431 events and tried with different sampling

techniques to find proper size of samples for different methods. Of course the full size of

dataset is not that big, but we had to think about the future research when we will have

much bigger amount of data. According to my experiments five percent of the data seems

representative enough for most for the analysis.

Figure 4.4: Getting the right representative sample
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4.4 Feature Subset Selection

Feature subset selection is an other way of reducing dimensionality. When there are irrele-

vant or redundant features, then the feature subset selection does not lead into information

loss. For example the id of the data sources does not give any useful information to the

quality calculations, so in this case we can say that the id is irrelevant feature. The best

way of finding the optimal subset is to try out all the possible subsets of features, but unfor-

tunately it would cost a lot of time, if we consider that we have n attributes, which means

we have 2n subsets of features. There are some approaches what we can use like Embed-

ded, Filter and Wrapper approaches. [TSK05] explains them separately, except embedded

approaches because that is algorithm-specific.

Figure 4.5: Architecture of feature subset selection, Source: [TSK05]

We can see the architecture of the feature selection process on the Figure 3.5. First it is

going through the attributes and applies a predefined search strategy, which selects pairs

or subsets of attributes. The next step is to evaluate if the subset of attributes are accepted

by the given criteria. If not then it goes back to the search strategy step. When the criteria

is fulfilled, then we know that we have the selected, right attributes. The criteria can be

the number of iterations, the value of subsets exceeding the given threshold, etc. The final

step is to run the selected data mining algorithm on the chosen set of features, and evaluate

the result of it. One of the most common way to evaluate it is to run the algorithm on the

full dataset and the selected features and compare them. If our method was good, than

the result will be almost as good as on the original dataset or even better.
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While I made my experiments with different approaches, I found that the most im-

portant combination of attributes for further processing are: Title, Date-time, Location,

Description, Price, Data-source. With these we can make further preprocessing, and the

object detection works perfectly with these.

4.5 Variable transformation

Variable Transformation is a really important part of the preprocessing, it helps to prepare

the data for the algorithm. As an example, when we want to calculate physical distances

between events, and distance differences, then it is enough to store the information in

its absolute value. Simple functional transformations are one way to make the variables

acceptable for algorithms. The way it works is simple as its name shows, mathematical

functions are applied on the original variables like: square root, logarithm, inverse etc.

Variable transformations have to be applied carefully, because they cause changes in the

nature of the data. Other way of variable transformation is Normalization or Standard-

ization. Some of important algorithms like the mean and the standard deviation are very

sensitive, especially outliers can have a huge impact on them. The main reason of the need

of standardization is that different attributes can have very different scales, and if we want

to calculate distances between object according to two attributes where one have much

bigger variance, than it would have much bigger impact on the distance. If the we want to

avoid that, we have to standardize the attributes, to the same scale. That had to be done

with our observation as well, we had to standardize the attributes of data sources, because

the attributes which have big impact had different scales. Other variable transformations

had to be done in the evaluation model as well.

4.6 Object detection and deduplication

Object detection is one of the most important task in our case, because when events are

crawled from numerous sources, then we have to be sure that the software doesn’t store

duplicates, each event should be unique. Why is this step important? In our data source

evaluation model it has a big impact if a data source has unique events or not. When we

represent the events and sources it could cause misleading informations if we would have

duplicates. The Figure 3.6 1 shows a good representation of deduplication.
1http://www.enterprisestorageguide.com/
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Figure 4.6: Deduplication, the letters representing the events

Object detection can be done in a way of calculating similarities or dissimilarities these

two can be calculated from each other. One way of getting the dissimilarities of two objects

is to calculate the distance of them. The first approach is the Euclidean distance, which

has the following formula:

edist(x, y) =

√√√√ n∑
k=1

(xk − yk)2

Where edist is the Euclidean distance between x and y, xk and yk are the kth attributes

of x and y. Usually the representation of the distances are in a distance matrix pairwise.

Minkowski distance is a generalized version of Euclidean distance, the following for-

mula shows how it differs from the Euclidean:

mdist(x, y) =

(
n∑

k=1

| xk − yk |r
)1/r

where the r parameter should not be confused with n which is the number of dimensions.
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The three most common usage of Minkowski distances:

• r = 1. Which is the City block distance (L1 norm), in networks analysis the Hamming

distance is used which is the number of differences between binary vectors.

• r = 2 . Eucledian distance (L2 norm).

• r = ∞ . Supremum (Lmax or L∞ norm) distance, which is the maximum distance

between any attribute of the objects. More formally the L∞ is defined:

sdist(x, y) = lim
r→∞

(
n∑

k=1

| xk − yk |r
)1/r

Distance measures are satisfying the three properties, that have to be satisfied if the

measure is called metric. These three properties are the Positivity, Symmetry and the

Triangle Inequalty [TSK05].

For object detection the first phase is to check the similarities and if it is high enough

then run other observations on those events. This first phase, makes less costly the object

detection in a way that not all the events have to be compared with a more advanced

function, which can cost a lot of computational resource.

There are also non-metric similarities that have to be checked. In the tourist recom-

mender case there is for example, time difference checking, which comes after the date of

the events matched and the title and the other required attributes are matched or had

high similarity. This is important because an event can be repeated more than once a day,

for example movies in open cinemas or a handcrafting session on a carnival. The distance

function for daily time difference is defined as it follows:

tdist(t1, t2) =

t2 − t1, if t1 ≤ t2

(t2 − t1) + 24, if t1 ≥ t2

where t1 and t2 are the exact time of the observed events, and as it have been discussed

before, the time differences shouldn’t be negative, that is why the plus 24 hours have to

be added when the first event starts later.

With this calculation the difference between frequent events can be recognized eas-

ily. For this recognition a learning algorithm can be implemented, which can learn from

the event history, if the low time difference means different events in a particular event

organizer.
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For the distance calculation the different formats of the dates and time have to be

considered, because it can be represented in a lot of different formats in the crawled data.

Below couple of formats is shown, that have been crawled from 251 different data sources:

• Short date pattern : 6/15/2017 (en-US)

• Long date pattern : Friday, June 15, 2017 (en-US)

• Full date/time pattern (short time) : Friday, June 15, 2017 1:45 PM (en-US)

• Full date/time pattern (long time) : Friday, June 15, 2017 1:45:30 PM (en-US)

• General date/time pattern (short time) : 6/15/2009 1:45 PM (en-US

• Month/day pattern : June 15 (en-US)

• RFC1123 pattern : Fri, 15 Jun 2017 20:45:30 GMT

• Sortable date/time pattern : 2017-06-15T13:45:30

• Universal sortable date/time pattern : 2017-06-15 13:45:30Z

• Universal full date/time pattern : Fri, June 15, 2017 8:45:30 PM (en-US)

These were the most common formats in the experiments, that have been made, but

the en-US and the en-GB month and day of the month order differences have to be

considered as well. The other issue with the date recognition is the language difference.

Even the same country can have events for just foreigners in focus and that case the

day or even the name of the month can be different. So, to be able to compare them

and make the difference calculations, variable transformation had to be done on the

dataset. The goal was to transform all the possible date formats into the most understand-

able format in many programming language’s DateTime format: 2009-06-15T13:45:30.

Other formats could be chosen, for example: RFC1123Pattern : ddd, dd MMM yyyy

HH’:’mm’:’ss ’GMT’; SortableDateTimePattern: yyyy’-’MM’-’dd’T’HH’:’mm’:’ss;

UniversalSortableDateTimePattern: yyyy’-’MM’-’dd HH’:’mm’:’ss’Z’; etc. The date

and time format have to be consistent after the variable transformation. It can be that

some programming language prefers a particular format for calculations and analysis and

in that case it is suggested to transform the date and time format into the preferred one.
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4.7 Discretization

Lot of data mining algorithm requires the data to be in clusters or categories already,

thus we need to run discretization algorithms on the collected data before we can use

classifications on them. There are supervised and unsupervised discretization algorithms.

In the following the supervised methods will be discussed. The concept is to place the

split-points in a way that the purity of each section is maximum. Best results are coming

form entropy based approaches for discretization. Entropy is the weighted average of the

individual interval entropies:

Let k be the number of class labels, mi is the number of values int he ith interval, and

mij is the number of values of class j in interval i. Then the entropy of each interval given

by the equation

ei =

k∑
i=1

pij log2 pij ,

where pij = mij/mi is the probability of classj in the ith interval. Entropy was defined as

the weighted average of each interval’s entropy

e =

n∑
i=1

wiei,

where m is the number of values, wi = mi/m is the fraction of values in ith interval and n

is the number of intervals [HJ14].

The goal is to make the entropy as low as it possible, if it is 0, then that interval is

completely pure (contains elements from only one class). To find the right number of par-

tition the algorithm should check in every iteration (split-point injection) that the entropy

decreased. If in the last steps it did not then the algorithm found the right number of

intervals, so this should be the stopping criterion for the algorithm. Figure 3.7 is a visual-

ization of different discretization techniques, the equal width discretization is unsupervised

approach as the equal frequency discretization. In the K-means discretization the number

of intervals are predefined, and it organizing the split-points in a way that focusing on low

entropy.
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Figure 4.7: Different discretization techniques, source:[TSK05]

There are cases where one attribute is not enough to make the discretization correctly,

e.g. in our experiment events have to be grouped according to more attributes like attend-

ing sum, date, location etc. Most of the times when we increase the number of attributes

to be considered, the optimal number of intervals are increasing as well. Usually the do-

main knowledge helps us to define how many attributes we have to consider, like in the

event recommendation case, if we have experience in using recommender applications while

she/he is traveling, then it is much easier to think about what attributes/informations are

necessary to categorize events or point of interests. Unfortunately the domain knowledge

often does not give us useful information about the data, in that case that approach could

give us poor classification results. A more empirical approach would be to group values of

attributes together only if it would give better result in classification, more pure intervals
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Figure 4.8: Discretizing 2 attributes, source:[TSK05]

or less entropy. Figure 3.8 shows how more intervals makes the classification more accurate,

and the group more pure.

On the left figure the attributes are discretized into three intervals, and on the right

figure x and y are discretized into five intervals to create the four groups (classes).

4.8 Summary

In this chapter the preprocessing of our data source have been introduced through the

explanation of each step by definition and in practice on our experimental dataset. Each

of the explained preprocessing method had been used to clear and prepare the crawled

data from numerous sources with different formats. These preprocessing methods are as

important for the recommender engines as the data source evaluation model, where the

uniqueness off the events are having a big impact and also the numbers, that is why the

object detection was important. The time and other formats had to be transformed into a

common format which is consistent through the whole process. Through the preprocessing,

lot of attributes had to be aggregated from other attributes, for example location. Objects

(Events) had to be created in a way that we do not lose information, when we find the

same event as we already had in the dataset but the new one gives us information, what

the previous one did not have and vice versa. Feature subset selection helped us to find

the relevant attributes and get rid off the irrelevant or redundant ones. So in the end of

the preprocessing phase the data is ready for the analysis and to give it to the evaluation

model.
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Chapter 5

Evaluation model

Tourist event recommender systems need a big amount of data, preferably all events around

a particular location. In order to get that data we need the organizers to upload every new

event what they organize/create/host to the application which handles the data. It can

be the recommender application or just a backed application where the organizers would

want to be shown. If the previous solution is not acceptable or the organizers would not

put enough effort to do it, then the recommender system lacks of information and cannot

work as good as expected. Also there is the cold start problem which we would need to

consider. As [RRS10] mentions:

"Cold start is the issue that the system cannot draw any inferences for users or items

about which it has not yet gathered sufficient information."

The other solution would be to find a feed which contains the upcoming events from

each location. Unfortunately there are no feed like that, feeds can be found about one

particular topic or location’s events that can be crawled as well, but do not satisfies the

tourist event recommender systems need. There are almost good sources for one or two big

cities in the USA, but that is not scalable if the system would expect every city or town

to have their own feed like those.

The only solution for the current situation is to collect the information about the events

semi-automatically from numerous sources through a data crawler engine. The web crawling

have been discussed in Section 2. Although in this way the system would avoid the cold

start problem, it is very costly to download event informations very often in computational

hours. These data sources can be on a different level in usefulness, some of them can be

completely redundant for the system, because it already crawled the same information

about its events. Others can upload informations or new events very rarely, so it is not

30



CHAPTER 5. EVALUATION MODEL

worth to check them often (in Section 2 the frequency model had been discussed, which

handles this problem partially). Lot other quality differences can be discovered through

the observation of the different data sources. In order to save computational resources, or

when a system reaches its limit, the import method have to rank data sources in the queue,

but how could it decide which one to rank higher? What happens if it ranks very low a

data source which played a very important role in the system? These data sources have to

be evaluated and indexed according to their importance related to our purposes.

5.1 First steps

In order to start building the evaluation model, the relevant attributes of data sources

had to be identified. The idea was to put the downloaded and preprocessed data into

an analytical tool which can help us identify the importance of the attributes, to find a

database for that we decided to go with elasticsearch 1 because it is very suitable for time

based data, and in our case the all the events has the time when it will be held. Elasticsearch

is a distributed, RESTful search and analytics engine capable of solving a growing number

of use cases. As the heart of the Elastic Stack, it centrally stores the data and allows us

to explore it. There are other good database solutions which would suit our needs, but

the reason why we choose elasticsearch is Kibana2. Kibana is a window into the Elastic

Stack and it enables visual exploration and real-time analysis of data in Elasticsearch. This

visualization tool helps us in the fast exploration and showed some unexpected results.

To be able to use Elasticsearch the data had to be committed into the database. Since

we already preprocessed our raw data, this task was not that hard. Elastic stack has a tool

called Logstash, which could help us in it, but CURL calls seemed much faster after the

preprocessing. We already had all the objects separated and detected and if the CURL

calls are implemented in that step, then the implementation time becomes much faster.

A call is not complicated, since Elasticsearch is prepared for this CURL commands.

curl -XPOST ’localhost:9200/events-5.0/face-crawled/’

-H ’Content-Type: application/json’

-d’JSON’

As it is well known CURL commands are bash commands, so we just had to run these

commands in a terminal, while the elasticsearch had been running in the background.
1https://www.elastic.co
2https://www.elastic.co/products/kibana
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These commands look like the one above, the call is the first part, it have to be specified

if it is a POST, PUT, GET, UPDATE, DELETE or any other database modification call.

The first parameter after the call declaration is the server location and the index name and

the type name in one URL, then the -H sets the header for the call in this case and all the

commit case we send a Content-Type header which tells the database, that we will submit

JSON objects. After this step the -d expects the the JSON file what will be committed.

An example of those simple JSON files look like as it follows:

{

"name":"Iron Maiden",

"owner":{

"name":"BudapestArena",

"id":"101863353191606"},

"start_time":"2014-06-03T20:00:00+0200",

"place":{

"name":"BudapestArena",

"location": {

"city":"Budapest",

"country":"Hungary",

"coordinates":"47.501819272771,19.106274882068",

"street":"Stefánia út2.","zip":"1143"

},

"id":"101863353191606"

},

"interested_count":115,

"attending_count":882,

"id":"217585528447378"

}

This is already the preprocessed and feature selected data what we submit to Elastisearch.

After 2541 events had been committed into Elasticsearch database, the next step was to

analyze them. Kibana provide us a lot of tools for that, it can even make aggregations, but

the most important feature is the visualization. On Figure 4.1 the front end visualization

can be seen. As it shows we can create Area charts, Heat maps, Horizontal and Vertical

bar charts, Line and Pie charts as well, and for more advanced data calculations the Data

table view and the Metric view.
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Figure 5.1: Kibana visualize view

Figure 3.2 shows what did the heat map of our event data gave back as a result in

hashed map view. For the evaluation model we need to consider attributes like:

• Uniqueness

• Event number

• Freshness

• Location of its events

The decision was to represent the dataset in a graph, where events and data sources are

both vertices and their connection is represented with edges. The model is very complex

but quite generic, which is applicable for different inputs. As a result we get a ranking for

the data sources, which allows us to order them according to their importance. The rank

of the data source d is calculated as it follows:

Rank(d) = w1uniqueness(d) + distinguisher(d) + w2degree(d) + w3
1

betweenness(d)
+

w4freshness(d) + w5location(d)

where w = {w1, w2, w3, w4, w5} are the weights which will change according to the appli-

cation’s needs. In the next sections these attributes and how are they calculated , will be

explained.
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5.2 Uniqueness

The dataset is already represented in a graph, the next step is to focus on one of the

most important attribute, the Uniqueness. To get an indicator like uniqueness, different

approaches had to be considered. The first point is to find those data sources, which has

at least one unique event. If a data source has a unique event, it is important information

for the model, because it means, that if we lose that data source, than we cannot get those

unique events from other sources. For the purpose of finding those sources, the algorithm

should go through and check the cardinality of each event and data source as well.

Cardinality is the number of elements in a set, in our case the cardinality of each Vertex

(both data source and events) is the sum of the edges connected to them. As an example

Figure 4.2 shows two data sources (squares) and seven events (circles). Both data sources

has one common event which has the cardinality of two, all the others are unique events

with cardinality of one. One of the squares could represent a concert hall website, which is

hosting artists and posting all its events, the other square could represent one of the artists’

website, who gives concerts in many places and posting them on his/her own website, and

the event in the middle is the concert in that particular concert hall with that particular

artist.

Figure 5.2: Cardinality

For the unique event calculation, the cardinality of data sources are less important than

the cardinality of events. If an event can be found just in one data source, that means that

source is irreplaceable. Of course we cannot forget the fact, that probably the system should

be able to make difference between data sources, which do not have unique events, because

if one of the sources which has a lot of events both unique and not becomes unreachable

or stops working, than it is predictable that it will cause uniqueness changes in the graph.

34



CHAPTER 5. EVALUATION MODEL

For example if we go back to Figure 4.2 where the concert hall and the artist’s website is

represented, if the concert hall’s website would be shut down for some reason, the event in

the middle would become unique.

The first approach was to go through all the data sources, and on their events and

calculate a sum of the cardinalities and choose the data sources according to that. It could

look as follows:

uniqueness(d) = min{log2ai + 1|i = 1, . . . , cardinality(d)}

where d is a particular data source, ai is the cardinality of the current indexed event, and

cardinality(d) is cardinality of d.

It could be working for those which has unique events, and because of the logarithm

it is standardized to a necessary scale. Unfortunately this did not suit well for the issue,

because it could not qualify the data sources which does not have unique events. An other

approach was to go through all the events and calculate an indicator of uniqueness with

the cardinality.

eventuniqueness(e) =
1

me

where me is the number of data sources for event e. To calculate the uniqueness of data

sources the algorithm would be to sum up the uniqueness of its events

uniqueness(d) =
n∑

i=1

eventuniqueness(ei)

where n is the number of events in the particular data source.

The problem with this approach is that it is sensitive to the number of events in the

data source which, at first view does not look a big problem, because it just makes the

scale bigger what we would need to normalize. The real issue, however is not that. In this

approach those data sources, which does not have unique events, could get bigger points in

uniqueness, than those which has a few. As an example if one data source has six events,

two of them are unique all the others are common with one other data source, then it

would result 4 as uniqueness index, but a source which has 30 event but all of them can be

found in two other sources, then it would result 10 as the uniqueness index. As a solution

we could divide the result with the number of events in the data source, but it still would

not distinguish enough between unique event holder and which does not hold any.
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The next algorithm developed within the thesis seemed very promising for the issue:

Algorithm 2 Uniqueness
1: procedure uniqueness(copy of graph)

2: while size of events > 0 do

3: e← minCardinalityEvent(events) . Find the lowest cardinality event

4: d← randomPick(datasources of e)

5: increaseIndicator(originalDatasource(d))

6: for all a = events of d do

7: delete(a)

8: end for

9: delete(d)

10: end while

11: return indicators

12: end procedure

The algorithm works in a way that it creates a copy of the whole graph and checks for

the lowest cardinality event (if there are more, then it picks a random one). It chooses one

of its data sources and increasing that source’s uniqueness index. Then it is going though

all of the events of that data source and deleting them one by one. When this step finished

the data source with no cardinality becomes deleted as well. These steps from picking the

lowest cardinality event repeating until all the event vertices disappear from the copied

graph. Then the whole loop is repeated 100 times to make the result smoother and the

indicators to converge to the correct value (this step is necessary because of the random

pick). In the end to get the indicators between 0 and 1, we have to divide them with

one hundred. The repetition time can be increased or decreased to make the result even

smoother or make the algorithm run faster.

With this approach there will be differences between the data sources which does not

have any unique event, so the issue is solved with this solution. An other Issue is that

sometimes the resources for crawling are not enough to download often all the unique

event holder sources, that is why we need to distinguish between data sources which has

unique events to be able to choose the most valuable of them.

The other reason why is it needed to make a difference between unique event holder

sources is, that if the data sources would know the algorithm they could just try to avoid

to be left out and they would trick the system with fake unique events. This happened

with Google indexing, called black hat search engine optimization, where fake back links

and meta keywords were embedded in sites to increase their position in the search results.
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5.2.1 Distinguisher

The first approach for handling these issues was to make an additional variable which would

be added to the previously calculated indicators . What are the impact factors, which that

new variable can give as a result?

• Sum of all unique events in the graph, denoted as uall

• Sum of all unique events of the data source, marked by u

• The average unique events for data sources, u

After a lot of iteration, the equation became the following:

distinguisher =
u

uall
∗ c(u−u)

where, c is a constant. This solution made differences between unique event holder data

sources, testing it on a big scale of data, most of the experiments were good, but when

the data source became extreme (lot of outliers, or few but impactful ones), the difference

between the data sources were too big. The solution had to be less sensitive for outliers.

The number of unique events had to be observed for checking how much outliers the

dataset usually has and what is the variance in it.

Figure 5.3: Bell Curve

If the visualization of dataset follows a Bell Curve as Figure 4.3 shows, then we can

say that the number of outliers is not big according to the whole dataset, but still have

to be under consideration, because they can still have big impact on our model. There

are a lot of way to handle outliers, some of them is changing the behavior of the data on

the model. The model needed a solution, which keeps the order, but do not have impact
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on the ones which does not have unique events. The main reason why the model needs a

solution, which handles outliers is that this step just have to distinguish between unique

event holders, while not making big differences, just make a ranking.

The sigmoid function was a good solution for that problem. A sigmoid function is a

bounded differentiable real function that is defined for all real input values and has a non-

negative derivative at each point. It is "S" shaped and smooth down the big differences.

Figure 5.4: Basic sigmoid function

The basic sigmoid function is shown on the Figure 4.4, and the equation looks as it follows:

sigmoid(x) =
1

1 + e−x

It is important in our case that the sigmoid have to be positive, because while it’s

stays positive it cannot make too negative impact on the data sources which have unique

events. The sigmoid function can be smoother or less smooth depending on the need, we

can modify the exponential part to make it suitable for our needs.

f(x) =
1

1 + e−k(x−x)
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The previous equation fits our needs, it is making it smooth enough which will be a

good multiplier for us. The u and u are still the number of unique events in a particular

data source, and the average number of unique events in the whole dataset per data source

respectively.

After a lot of experiments, and running it on more than 1500 events and more than 200

data sources, the result was still promising and satisfied our needs. So the final distinguisher

function looks as it follows:

distinguisher =
u

uall
∗ 1

1 + e−1(u−u)

The final experiments on the uniqueness part of the model were made on a dataset,

where data were crawled from facebook pages’ events and clubs and museums websites.

It had to consider all the possible future cases, so we made test data sources as well like

a complete copy of a website data, or partial copies, copies which are more important

than some facebook pages and vice versa etc. The distinguisher is not rounded because it

still should be able to make difference between sources even if the difference is smaller. In

opposite of the other case where we calculate the uniqueness function on the sources, it is

better to round that number, because we do not have to make too much loops to make it

smoother. A part of the result looks as it follows on Figure 4.5.

Figure 5.5: Partial result of running the uniqueness method

In the example above, the bjc.hu and its copy does not have a distinguisher number,

because they does not hold any unique event, obviously because they are copies of each

other. So the highest number of non unique event holders is 0.5, if their event can be found

in more than one other sources, then the number decreases.

As a result we got the uniqueness of each data source, which helps a lot to decide how

worth is it to crawl those sources frequently but this is not the only impactful indicator, the

model could consider much more. How important a vertex is in the whole graph and what

impact they make on the nearest neighbors. The next sections will discuss those questions

and other indicators as well which can make impact for a recommendation system. Let’s

take a look at the final algorithm of the Uniqueness function:
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Algorithm 3 Uniqueness
1: procedure uniqueness(copy of graph)

2: while size of events > 0 do

3: e← minCardinalityEvent(events) . Find the lowest cardinality event

4: d← randomPick(datasources of e)

5: increaseIndicator(originalDatasource(d))

6: for all a ∈ getevents(d) do

7: delete(a)

8: end for

9: delete(d)

10: end while

11: indicators = {indicator(d1), indicator(d2), . . . , indicator(dn)}
12: for all i ∈ indicators do

13: i = i + distinguisher(d)

14: end for

15: return indicators

16: end procedure

5.3 Social Network analysis

"Social network analysis comprises a powerful set of techniques for quantifying, differen-

tiating, and interpreting social interactions or relational data in general." [LC16] Social

network analysis (SNA) is not a formal theory in sociology but rather a strategy for in-

vestigating social structures. The graph with the events and their data sources in it can

be considered as social structure, because we know the connection between them. Most of

the techniques of social network analysis are working better on homogeneous datasets, but

they can still perform well on heterogeneous datasets as well and they can provide useful

information to our evaluation model, too.

Each social network is a graph which includes vertices as nodes and edges as relations

between them. Graphs can be directed or undirected, they can have weights on their edges

which can represent lot of things. In our case if the graph would just have the data sources

represented in it homogeneously, then the edges could represent if they have common events

or not, with the weights showing how many common events do they have.

The most suitable representation for graphs are the adjacency matrices. Adjacency

matrix for a graph, with n nodes, has nxn size and its (i,j) field’s value equals one if the

ith node and jth node are connected, and zero if they are not. [J.P03]
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Adjacency matrices are diagonally symmetrical, and its diagonal elements are all equal

to zero (these matrices are called Hollow matrices), because neither of the vertices are

adjacent to themselves or have connections with themselves.

Figure 5.6: Adjacency matrix, source: http://mathworld.wolfram.com

On Figure 4.6 there are three examples of small adjacency matrices and their graphs.

There are cases when the dataset is really sparse (In numerical analysis and computer

science, a sparse matrix is a matrix in which most of the elements are zero, the opposite of

dense matrices, which means most of the elements are nonzero). For those cases there are

cheaper representation of the matrices than with adjacency matrix. For example in some

programming languages SparseMatrix or SparseArrays are implemented. Those structures

are just storing the indexes of those fields which is nonzero. If the graph is weighted then

next to the indexes we store the value of the nonzero fields. A representation of sparse

matrix is on Figure 4.7.

These adjacency matrix representations can help in a lot of methods. In the uniqueness

calculation, that would be an other option to multiply the adjacency matrix with itself.

In the result, all of the fields which are nonzero mean that the corresponding vertices

has the distance of two from each other, in other worlds: they have a common vertex in

connections. Of course the previous state stands only on non-weighted adjacency matrices.
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Figure 5.7: Sparse matrix, source: http://btechsmartclass.com

Most of the social network analysis methods expects adjacency matrices as parameters.

These methods are really useful for our evaluation model, because they can show how

important is a data source in the dataset and even show that how similar are they.

Figure 4.8 shows an example of our experiments, with seven data sources and their

events, it is obvious that the events distances are very different from their data sources.

Although these distances are not connected to the similarity of the data source and the

event, but they are representing how similar are the events itself.

As we see in the middle couple of the events of the big data source in the middle are

very far away from the others, but they are also connected to the other two data sources.

Those events are Jazz lessons with a famous artist and all the other events are Jazz concerts

with different artists.

For the experiments and visualization, Java suited the best. In performance, for these

tasks, it is faster than R or Python, and less time consuming to implement than C++.

There was a good library for graph handling called JUNG (Java Universal Network/Graph

Framework), which helped in the representation and even in the visualization. It has im-

plemented algorithms for data mining, graph theory and also for social network analysis

such as clustering, statistical analysis, and calculation of network distances, flows, and

importance measures.

In the next few subsection social network analysis algorithms will be discussed like:

Distance, Degree, Closeness, Betweenness centrality, PageRank etc.
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Figure 5.8: Visualization on 7 data sources
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5.3.1 Vertex (Node) Properties

The properties of the network is calculated from the properties of each node (vertex), that

is why the basic properties of nodes have to be covered int this section.

First property is the most basic, it is called the degree. This indicator shows how

many connections a node has. In our case, because our adjacency matrix is undirected and

all events are connected to its data source, the degree is the sum of corresponding rows or

columns of the node. In databases degree and cardinality has different meaning, degree is

the number of entities involved in a relationship and the cardinality is the number of each

entity involved in the relationshop which can be 1:n or n:n relationship as well not just 1:1.

In our case there is no difference between the two terms, so in the future the cardinality

term will be used to keep it consistent.

Figure 5.9: Degree of nodes in a network

Distance is an other important information what shows the way of information diffuse

in a network. The distance is calculated between vertices in a way that it finds the shortest

path between them and calculates how many edges included that shortest path. We can

make a distance matrix as a representation which is our case, because it is undirected

graph, symmetric diagonally. Distance is important measurement for us, especially the

event distances between data source vertexes, mostly the two length distances, that shows

sources have common events. Longer 4-6 distances are interesting as well, because there

can show the middle sources can be more important then it seems according to uniqueness.

The next Vertex property is the Closeness which had to be considered. It shows how

well accessible is one vertex in the network, which can lead us to the information that our

uniqueness calculation was right or had we made any mistake with that part of the model.

So closeness was important in self evaluation, and it can be used to evaluate the first part

of the model.

Last but not least, betweenness have to be discussed as a basic node property. Be-
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tweeness is a measure, which shows how important is the position of that particular vertex

in the whole network, and it is computed as:

betweenness(v) =
∑

u6=v 6=t

nspv(u, t)

nsp(u, t)

where u and t are vertices not equal with v and nsp(u, t) is the number of the shortest

paths form u to t and the nspv(u, t) is the number of shortest paths between the nodes,

which goes through v vertex [TSK05].

In our case it is used for showing how important is a data source for events, and

find events which has high betweenness. That means that an event is connecting data

sources and we can observe if that is the only event which makes the data source less

unique or there are more of these high betweenness events in its list of events. If there

is more than one of those, then we should observe if the events are connected between

only the same data sources, or they are distributed: it means that the data source can be

the connection between more data sources and it can be a feed as well, which provides

important information even if it does not have any unique events.

Figure 5.10: Betweenness Centrality, source: http://www.lyonwj.com

As Figure 4.10 shows how betweenness works and what it tells us, we can see that

how big are the vertices, how big is their degree, and the highlighted vertices has the

highest betweenness centrality in the network, which can tell us which nodes are connecting

clusters. It is important to know for us that which are the nodes within betweenness

centrality, because that tells us those nodes which can be concert halls, clubs / concert

venues, forums, etc. which collects events of different artists. If they are such event collectors
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that can leads us to the decision, that even if they do not have unique events they are very

important for the model, because they can post new events from a new artist whose website

is not crawled yet by us.

5.3.2 Structural Properties of Networks

The previous properties described above are related to individual nodes of the network,

however networks itself has interesting properties in social network analysis, which can be

important for our research. These properties will be discussed in this subsection.

One of these structural properties is the Diameter, which is easy to compute. It is a

maximum search on distances between nodes, useful to find out because, there can be a big

group of data sources and they can influence each other if they are connected. Nonetheless it

is not being part of our model because that has no impact on the whole network, diameter

is better for alerting that there can be an interesting connection line which is worth to

observe. The next property of network which make sense to discuss is the Cliques. A

clique is a subset where every two nodes in the subset is connected. This is also not the

most important for our model itself, however it can give very important information to

the recommender engine. It is also much easier to cluster the nodes, if we observe the

connections between event nodes in cliques. This needs a separate, homogeneous event

graph, not our complete one.

Last but not least the modularity gives us the information about the possibility to

break the network into groups. It is a degree which show the network clusters. If that score

is high, that means the vertices can be split into groups, in this groups the vertices have

strong or lot of connections, while connections between groups are weak or do not even

exist, as Figure 4.11 shows. This can give us answers for some research question what came

up through the experimental phase: probably that would give better results if the model

would run on separated clusters and then merge the sources. As a first step the algorithm

would need to run the modularity measurement and make the clusters like sport events,

cultural events, concerts etc, and then try to run the uniqueness and other social network

analysis to evaluate the data sources. Why is it important? Through the experimental

phase when the evaluation were already done, the modularity as a last step showed, that

some of the topics did not get good points and certain topics made the highest ranking.

For recommender systems it is important to have enough events from each domain, so it

has to make the ranking after it has been split. In this way each domain or category would

have their high ranked data sources, and after that we can merge them by ranking. In this

way there is much less chance to leave out some interesting bu rare topics because of their

lower ranking.
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Figure 5.11: Modularity in networks, source: http://www.pnas.org

5.4 Freshness, Structure quality and Location

From the previous properties, we can already make good measurements and propose an

evaluation, but there are other relevant informations, which can be important in some

cases, such as keeping the data up to date or focusing on different areas or performance

optimization. Location is not focusing on exact locations in this measure, just trying to

decide what distance is worth to travel for the tourists. As it was discussed before, in the

Budapest pilot the experiments showed that big part of the events are inside the smaller

ring road (Tram line 4-6). For this measure we need to observe if the data source is having

events on the same location most of the time, or it is different usually. If it is the same

than the task is easy, find the relevance borders for the recommender and divide the area

into circles and give points according to that. The other case is when most of the events

have different locations, then the algorithm should calculate the center of the locations

(carefully with the outliers) and give the score according to that.
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Freshness is an other property which was already discussed in the crawling session

with the age function as cost functions according to [Cas04]: Freshness is a binary function

that measures whether the the downloaded local copy is accurate according to the live

page. The freshness of a page p in the repository at time t is defined as:

Fp(t) =

1, if p is equal to the local copy at time t

0, otherwise

Age is a measure, which indicates how outdated the downloaded copy is. The age of a

page p in the repository, at time t is defined as:

Ap(t) =

0, if p is not modified at time t

t - modification time of p, otherwise

With the help of these functions, the scheduler can calculate how often a page is usually

updating the content, or in other words, how ofter is the downloaded copy gets outdated.

The frequency information can tell us from different data sources for the same event, which

one of them posted it earlier or which one is posting more frequently. That information can

influence the importance result. As an example it can be important to know if an event is

canceled or changed its information like the location or the starting time. For applications

where to be up to date with event informations is crucial the freshness property can be

weighted more.

Performance can be one of the most important reason why the evaluation model is nec-

essary, but other than the betweenness and the centrality the model have to observe other

impactful factors as well. Lot of ready made crawlers are working well for this purposes,

but all of them have struggles with the poorly structured websites, or making much better

performance on a collection page, rather than go through all the event detail pages one by

one.The model have to make differences between these cases, because it the performance

counts more and 95% of the events are still downloadable with a much higher performance

and less resource needed, then it can worth application to lose 5% of events to improve

their service. This can be measured in different ways: The easiest is to get the time t which

is the needed time to download the events from the particular data source and number n,

which indicates the number of downloaded events, for performance it should be enough.

The title of the section mentions Structure quality, not performance for a reason, that

time per number of events can lead us important information, but it is important to take
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under consideration how much information did the algorithm get from the events. Through

the experiments it was easy to point out that lot of sites are really poorly structured and

it takes a lot of effort to get all the necessary data, or it did not even found every needed

information.

Figure 5.12: Example of bad structure

On Figure 4.12 a poorly structured HTML code part is shown. The figure shows an

event on a venue’s website, where the date and time can be crawled easily. The developer

even used the right format for that hidden in the code in the content field of the "startDate"

div, title can be extracted relatively easily as well, but that is all from the good side of

this structure. Price of the event is easy to point out where can be found with basic text

analysis as well, but it has been broken into <span>s and the categories for them are not

clear for a crawler, the separators are different, the currency can be found, but as all of us

can guess , it can be numerous different versions of the price plus text combinations, which

is hard to mine and crawl down. Then the description attribute has been broken into three

parts which are placed in six containers. Other important information is missing, that is

the location. Location have to be found separately on the contact page of the website, and

match it with the events.
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For this reasons it makes sense to distinguish data sources according to how easy is to

crawl them, how well accessible the information on them is and what computational cost

it will require.

5.5 Summary

Recommender systems are facing the problem of cold start. It can be solved partially, with

data crawling. It is even helping to keep the data up to date, not necessary to have editors,

or the users to modify the data according to the changes. Early stage applications, or even

in the scaling stage, probably do not have unlimited resources (computing power, money)

to crawl numerous data sources frequently and waste computing power on them.

To solve that issue, those applications can cut the number of those data sources to make

the whole process more efficient. This approach brings up an other issue, that who and

how will decide which data sources to cut off. If it needs to be automatic, then the solution

can be an evaluation model which ranks the data sources according to the importance of

them. With this ordered data sources, it is easier to decide where to cut off the rest, to do

not lose events or to optimize the performance.

This chapter discussed different part of a model, what have been created for this pur-

pose. The proposed model looks as it follows:

Rank(d) = w1unqieness(d) + distinguisher(d) + w2degree(d) + w3
1

betweenness(d)
+

w4freshness(d) + w5location(d)

where w = {w1, w2, w3, w4, w5} are the weights which will change according to the ap-

plication’s needs, and d is the current data source what the algorithm is observing. The

weighting is important, because there can be application which has a goal of getting all

the events or as much as possible and others which is focusing on performance to be able

to offer trust worth fast running applications on the crawled data, and that is not harming

it, if it cost some percent of the events.
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Chapter 6

Telekom data

One of the research objective is to find out how can we use the data provided by Magyar

Telekom, to improve recommender systems, especially tourist recommender systems. To

understand to importance of the data, first it have to be showed and explained. In the first

section the dataset will be introduced and in the second section the value, what it adds to

the recommender engines.

6.1 Dataset

Magyar Telekom provided us approximately half a billion transaction information, which

is enough to sample, find out the possible added values of them and run the experiments

on them. All the data is anonymous, because the protection of personal rights. The cleared

dataset is divided into five tables in the database: Customer Relationship Management

(CRM) Table where the information about the anonymous customers are stored, The MSC

Table which stores data about started and received SMS-es and calls of the phone numbers

in the CRM table, NGPRS Table which stores information about the data both POST and

GET calls form the registered phone numbers in CRM Table, TAC (Type Allocation Code)

Table includes data about devices which are able to make data calls and voice transactions,

CELLS Table is storing information about location of towers and antennas, which are able

to make voice or data transactions. This section will introduce these tables in more depth,

explaining the fields of them.
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Customer Relationship Management (CRM) table is shown on Table 5.1, where

9 fields of the dataset is shown: subscriber id, client id, client zip, client city, client gender,

client age, client magenta, client arpu, client switch

subscriber id client id client zip client city client gender client age client magenta client arpu client switch

58F755BC 58F1E3A3 4287 Vámospércs 0 72 0 5 0

58F755AD 58F15AB5 7150 Bonyhád 1 51 1 1 0

58F755B4 58F2B149 8438 Veszprémvarsány 0 40 0 3 0

58F755B7 58F1F1C1 6921 Maroslele 0 31 0 1 1

58F755B6 58F299B0 1133 Budapest 0 56 0 2 1

58F755A9 58F17768 2851 Környe 0 36 0 1 0

58F755A8 58F1DB12 6724 Szeged 0 50 0 1 1

Table 6.1: CRM Table

Subscriber id is a unique hash, which is generated based on the phone number, and

this can be used to match the information from other tables, or in other words this will

be the foreign key in the MSC and NGPRS tables. Client id is an other unique hash,

which is generated based on the client’s identity, and it provides information about which

subscriber ids (phone numbers) are connected to a client it is a 1:n connection between

the client and subscribers. As an example, in a family usually the client is the father and

the wife and the children get discounted package but all of those phone numbers will be

under the father’s client id. Client zip is a four digit field, which as its name says showing

the registered zip code of the client. Client city fields name also tells what it contains but

it is a string type field. Client gender is a binary field, where 0 indicates the Male, and 1

indicates the Female. Client age is a numeric field which contains numbers between 18 and

99, which is the age of the client. Client magenta, is a binary indicator as well, which shows

if the client has magenta package or not, 0 indicates No, 1 indicates Yes. Client arpu is an

other numeric field which contains number form 1 to 5, arpu value shows how important

is the client to Telekom, the higher the number is the more important is the client. Client

switch is a binary indicator, which shoes if the client changed device in the observed time

interval or not, 0 stands for no, 1 stands for yes.

subscriber id call id tac type datetime duration destpoint id cell id

58F755BB 9594364 86086503 1 12/04/17 17:18 58 1 40141B03F

58F755BD 14308753 35523403 1 12/04/17 15:12 21 4 FF6050FF5

58F755BB 9594364 86086503 1 12/04/17 21:13 29 3 40141B03F

Table 6.2: MSC Table
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MSC Table is shown on Table 5.2, where the eight cells of it is visible. Where subscriber

id is a unique hash, which is generated based on the phone number as in the CRM table,

an this id is a foreign key from the CRM table, with this attribute is possible to connect

the tables. Call id is a call transaction identifier, it is also a hash based on phone number,

and call. The call id is unique every day for a phone number and a particular call. Tac field

has the type allocation codes in it, which provides information about the device. Type is

showing what kind of transaction was that. It has integers, where 1 stands for started call,

3 stands for received call, 7 for received SMS and 9 is for sent SMS-es. Datetime attribute is

showing the time of the start of the transactions, it has YYYY-MM-DD HH-MM format.

Duration is a non-negative integer which shows the length of the transaction, when this

filed is empty, that means the duration is not understandable, for example SMS-es do not

have duration in the database. Destpoint id contains integers as well, which are showing the

type of the receiver (the direction), where 0 stands for short numbers or special numbers for

example police, ambulance etc., 1 stand for Magyar Telekom, 2 stands for the clients which

have been transfered to Telekom from Westel when Telekom acquired it, 3 is for Telenor,

4 is for Vodafone, 5 is for landline phone and 6 is for international transactions. Cell id is

a foreign key from cells table, it indicates the first tower or antenna which registered the

transaction, it is also a unique hash.

subscriber id call id tac technology type datetime duration cell id

58F755BB 1059300461 86086503 4 85 12/04/17 15:07 1806 CE9422CC5

58F755BB 941873055 86086503 3 18 12/04/17 18:26 71 45C5F6D1B

58F755BB 1059300461 86086503 4 85 12/04/17 15:07 598 5B8B58DAC

Table 6.3: NGPRS Table

NGPRS Table is shown on Table 5.3, where the eight cells of it is visible. Where

subscriber id is a unique hash, which is generated based on the phone number as in the

CRM table, an this id is a foreign key from the CRM table, with this attribute is possible to

connect the tables. Call id is a call transaction identifier, it is also a hash based on phone

number, and call. The call id is unique every day for a phone number and a particular

call. Tac field has the type allocation codes in it, which provides information about the

device. Technology has integers in it, which are indicates the network technology whihc

was used for the transaction, 2 stands for 2G, 3 for 3G and 4 is for 4G. Type is an integer

field wich show the type of the transaction, 18 stands for SGSN, 84 is for SGW, and 85

is for PGW. Datetime attribute is showing the time of the start of the transactions, it

has YYYY-MM-DD HH-MM format. Duration is a non-negative integer which shows the
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length of the transaction. Cell id is a foreign key from cells table, it indicates the first tower

or antenna which registered the transaction, it is also a unique hash.

technology cell id 1 cell id 2 latitude longitude

2G 0112F60300220BBC B677D701B 47.464148 19.116065

4G 0212F603107304AF AD3B8C80A 48.320775 21.102736

3G 0112F60300820C2B 29F62254A 47.476661 19.029112

Table 6.4: CELLS Table

CELLS Table is shown on Table 5.4, where the five cells of it is visible. Technology field

shows which technology the tower or antenna is capable of. Cell id 1 is the real Identifier

which has more information about the it, but it is not what other tables use as foreign

key, that is the cell id 2 field, it is shorter, both of them are unique hashes. Latitude and

Longitude fields are both floats with 6 decimals, Latitude is the estimated latitude of the

tower or antenna and longitude is the estimated longitudes of them.

Last table to introduce is TAC table, which is not shown in this section, because that

one has the least impact on recommender system, what fields it contains? Tac, which is the

id and the foregin key in other tables; manufacturer, which shows the Brand model, which

tells the exact model number, variety of one kind can has separate model number; aka is

the known name of the device by clients; os shows what operation system that device has;

year field shows the release year of the model; lte shows, if that model is capable of LTE

technology or not.

6.2 Provided value of the data

The dataset provided by Magyar Telekom can influence recommendation in more than

one way. First important information, that the dataset provides us is location information

about the people who had any transaction with telecommunication. This way, if a tourists

are in a city for the first time, then we can track which location did he or she already

visited, those point of interests can be hidden or positioned in the end of the event queue

as recommended activity. If the data shows different locations in different time for the same

client, then we can calculate by the time spent between the two locations, what is the most

likely way the client got to the new location. Visualization of GPS tracking: Figure 5.1
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Figure 6.1: Location tracking, source: http://www.businessnewsdaily.com/

Location of the the locals can be useful as well, even for tourists or locals. For tourists,

we can predict from the historical data, which places are crowded or even which event

could be popular in the past and according to that, suggest events. For locals, when they

are looking for events around them, they can check real time, if the venue is crowded or

not, and depends what they prefer, they can choose. While the tourists are traveling in

the given location, the system can check if they are close to other events which are out of

interest, but they can change their mind and probably they would take the chance to visit

it. It is good for venues an the event organizers, and even can be good for the tourist, if they

find out that the event is actually matching their interest. Music recommender systems are

using this model, when sometimes they recommend a music totally out of interest and the

listener can figure out that the music is actually matching the current interest of him/her.

In this way users interest can evolve together with the system. Daily location history can

help to plan the future activities for that day, according to the closeness of events and

point of interests. Because from the historical data the direction can be calculated easily,

and the system would not recommend the traveler to turn back and find the activity where

the person where before
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Customer relationship management information is very good starting point for the

algorithm, clustering people according to the given information about them, even if it is

anonymous, the data can be still very well clustered. Clusters give knowledge about people

and how other part of that cluster decided according to the recommendations. From that

the algorithm can learn and change. In tourism it is very likely to find patterns in the

behavior of them. The algorithm can use those patterns to predict user needs, and train

itself. These clusters can be based on many attributes: age, gender, phone model’s release

year and so on. These clustering methods are working with high accuracy.

From the information that which cities are the tourists from, the system can find other

patterns or can take it under consideration while clustering people. It can be found that

from cities people like some kind of events more than the others, or they often give similar

feedbacks on them.

Cells table is very useful for the recommender system. It gives the starting point of

hashing the exact locations of events to the closest tower or antenna. In this way the

physical distance calculation is much cheaper. The system can use the cells for triggers.

Whenever a tourist who is looking for activity registers a transaction on a cell which is

connected to an ongoing event, then the system can notify the user.

An other usage can be, that tracking tourists and checking if they are going together

with a group. Then a lot of group recommendation techniques can be used to find the most

suitable events and point of interests to the whole group to satisfy as many travelers from

the group as the application can.

With further research weather information can be calculated in the plan as well, and

location can be very important in that case as well. Even if it is too hot, we can suggest

beach events or if a storm is coming the application can suggest indoor activities. Then

the system can make the most out of the current possibilities.
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Chapter 7

Future research

The data source evaluation model is satisfying the current needs, but there is always space

for improvement. Tourist event recommender systems can improve the quality of recom-

mendations considering weather information. It can be crawled from numerous sources as

well. Weather information feeds are existing and the weather forecast websites are good

sources for that as well. For that purpose the evaluation model can be applied too. Finding

the best weather forecast sites, the most accurate ones. It can even compare the informa-

tion with open reachable weather sensors to validate the information gathered. After the

information is downloaded it is an other challenge to find out how to calculate the fresh-

ness of the data, because weather can change quickly and it is hard to predict how often

should be the information updated our downloaded. Even if we get the data from separate

sources, the preprocessing method should be developed. All the weather information have

to be cleaned and merged, to be able to predict and plan with the weather changes and

give recommendations according to that. To help that recommendation we need to group

events according to the indoor or outdoor attribute of it. If we consider other locations than

the pilot Budapest, then other informations can be important like how easily accessible

the location of the event according to the weather conditions or seasons is.

While the experiments were made, the possible problem come up namely, what happens

if all the data source of a category gets low ranking from the evaluation model. That case

the source number could leave out all of them and we would not download those sources

and the events of them. This problem can occur when from one category all the events can

be found in multiple data sources which does not play big role in the whole graph. To avoid

the event loss, and the loss of the whole category a clustering method can be run before

the data source evaluation. After the clustering the evaluation model can be run separately

for every category or group of data sources. This way the ranking of sources would affect

all categories in the same way and even if a category’s sources would not have high rank
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in the original method, the end result would still have events from all categories. As an

other possible solution for this issue, the original evaluation process could include an other

property about importance for own categories, and then it can be weighted according to

how important is for the system to have all the categories.

For an easier usage of the model, an application can be built, which would serve the

users. It could be a RESTful API or a whole web application. The evaluation model can

serve different purposes. It can aim to keep as much events as possible, or aiming for

the highest performance or to keep the information up to date with the highest possible

freshness rate. For these separate purposes the weighting can be a solution, according to

how important is each property, they would get different weights. Later on even machine

learning techniques can help to optimize these weights and suggest the users the right

settings for their needs. Of course in an application like that, there should be a possibility

to set the working environment as well. Later, Docker can be built in the application, and

all users can clone their whole environment and run the evaluation on that.

Other future work will be gathering and analyzing as much attributes as we can get,

and use the knowledge what the analysis can give to improve our model. Also various

recommendation techniques and engines can be tested and observed, and according to the

recommender techniques the user is willing to use, the system can preset the weights and

attributes, saving time and get much satisfying results for the users.
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Chapter 8

Conclusion

The goal of the thesis was to identify open data sources about events and point of interests,

and if it is possible then do it in a semi-automatic manner. The most important part was

to create a measurement model, which helps data-scientists to evaluate data sources,

based on resources in the topic. However the model itself is focusing on data sources for

event recommender systems, with some modifications it can be applicable on other data

crawling purposes as well. With the application model for measurement, we could identify

what data sources are worth to put resources (computing power) into. Crawler engines (eg.

import.io, Norcorex collector) helped, to crawl the data from the approved sources by the

model. There were more options to store our crawled data, we could store it in comma

separated value (CSV) files, or in relational/non-relational databases. We decided between

the options according to the usage of the data.

After we gathered the data, it had to be preprocessed to be able to analyze it and make

the further research on them. The research showed how to measure the usability of an open

data source in a tourist recommender system. Graph representation and social network

analysis methods were used to create a complex model for the purpose. Preprocessing

methods were used to clear and unify the collected data like Aggregation, Dimension

reduction, Variable transformation, Feature subset selection, Object detection etc.

The thesis is, in fact, prepares the ground for a more thorough research in recommender

systems to be pursued within a PhD study. Nevertheless, the achieved results within the

thesis will be valuable on their own, though, fostering the ground for any further research

in this direction.
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