
Eötvös Loránd University
Faculty of Informatics

Investigating the Importance of
Meta-features for Classification Tasks

in Meta-learning

Dr. Tomáš Horváth Jehad M. Aldahdooh
Head of Data Science Department at

ELTE

Computer Science

Budapest, 2017.

Acknowledgement

I would like to express my gratitude to my supervisor Dr. Tomáš Horváth. His guidance

and motivation helped me a lot from the first day of this research.

I would also like to thank my university -Eötvös Loránd University- for giving me this

chance to study at such a great university.

Last but not least, I would like to thank my family and teachers from my home country

especially to Dr. Aiman Abu Samra for supporting me in my life in Budapest.

i

CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis outline . 2

2 Machine learning 1

2.1 Binary classification Models . 1

2.1.1 K-Nearest Neighbors . 1

2.1.2 Logistic regression . 4

2.1.3 Support vector machine: . 8

2.1.4 Decision Trees . 11

2.1.5 Random Forest: . 14

2.1.6 Extreme Gradient Boost [Xgboost] algorithm: 17

2.2 Performance metrics for binary classification: 20

2.2.1 Accuracy . 20

2.2.2 Imbalance metrics . 20

2.2.3 Probabilistic classifiers metrics . 23

2.3 Model Evaluation . 26

2.3.1 Hold−Out process . 26

2.3.2 K-folds Cross−Validation . 27

3 Proposed Experiment 30

3.1 Datasets . 30

3.2 Hyper-parameter Ranges . 33

3.3 Meta-features Extraction . 34

ii

CONTENTS

3.4 Genetic Algorithms . 37

4 Results 44

5 Conclusion 49

5.1 Future work . 49

Bibliography 51

iii

LIST OF FIGURES

List of Figures

2.1 K−Nearest Neighbor algorithm[Ras17]. 1

2.2 K−NN accuracies with different K values 4

2.3 Logistic regression algorithm . 5

2.4 L1 and L2 penalty with different values of C in Logistic regression[PVG+11] 8

2.5 Support Vector machine[Say11] . 9

2.6 Non-Linear transformation in Support Vector machine[Say11] 10

2.7 Decision Tree Classification[Ras17]. 12

2.8 Ensemble learning Example on ozone and temperature datasets [Est17] . . . 15

2.9 Random Forest steps [MA15] . 16

2.10 Speed Benchmark Result [CH15] . 18

2.11 An example of ROC curve of the LogisticRegression classifier over 3-fold

cross validation[Ras17] . 24

2.12 precision-recall curve[BHK15] . 25

3.1 Genetic Algorithm. Tree Basic steps of GA: selection, crossover and muta-

tion. [HLL13]. 38

3.2 Single point crossover[SS07]. 41

3.3 Two-point crossover[SS07]. 42

3.4 Two-point crossover[SS07]. 42

3.5 Bit-flipping mutation of parent a to form offspring b[SS07]. 43

iv

LIST OF TABLES

List of Tables

2.1 K-NN Implementation in Python Scikit-learn package 3

2.2 Logistic regression Implementation in Python Scikit-learn package 6

2.3 Comparison of L1 and L2 regularizations. 7

2.4 Support vector machine Implementation in Python Scikit-learn package . . 11

2.5 Decision Tree implementation in Python Scikit-learn package 14

2.6 Random Forest Implementation in Python Scikit-learn package 17

2.8 Hyper−parameters . 22

2.9 AUC-ROC Score Implementation in Python Scikit-learn package 25

2.10 Average Precision Score Implementation in Python Scikit-learn package . . 26

3.1 The training datasets of the thesis . 32

3.2 Hyper-parameters Ranges of the applied machine learning algorithms. . . . 34

3.3 Caption for LOF . 35

3.4 MF used in the experiment . 37

4.1 The MFs which are correlated with the accuracy performance metric. 45

4.2 The MFs which are correlated with the AUC-ROC metric. 45

4.3 The MFs which are correlated with the Cohen’s kappa metric. 46

4.4 The MFs which are correlated with the F-measure metric. 46

4.5 The meta-features which are correlated with the Matthews correlation co-

efficient metric. 46

4.6 The MFs which are correlated with the precision performance metric. 47

4.7 The MFs which are correlated with the recall performance metric. 47

4.8 The MFs which are correlated with the balance accuracy metric 47

v

LIST OF TABLES

4.9 The common MFs that are correlated with different performance metrics . . 48

vi

LISTINGS

Listings

2.1 Different performance metrics used in this thesis from Sklearn package . . . 22

2.2 K-folds cross validation implementation in Python 27

2.3 K-folds function which divides the dataset to k-disjoint partitions. 28

vii

Acronyms

Acronyms

AutoML Automated Machine Learning.

GA Genetic Algorithm.

HP HyperParameter.

MF Meta Feature.

ML Machine Learning.

MtL Meta Learning.

viii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

The most important task of data science and automated machine learning (AutoML)1

is to find the best Machine learning (ML) technique to use for a given dataset in hand

and tune its hyper-parameters (HPs). While HP tuning can largely affect the predictive

performance of a used ML algorithm, this task is data-dependent such that a certain HP

configuration might be very good in case of one dataset while not to other datasets.

The recommendation of the best ML algorithm and it’s adequate HP configuration are

the subject of a research area known as meta-learning (MtL), described in more details in

[BPR09]. The first step in the use of MtL is the representation of each dataset by a vector of

features, often named meta-features (MFs), which describe important aspects of a dataset

and are used as predictive attributes in a meta-dataset. The next step is the recording of

the predictive performance of a set of ML algorithms and their HP configurations on these

datasets. The predictive performances for each dataset will be the target attribute for the

MFs extracted from the dataset in the meta-dataset. Finally, a meta-model induced by the

application of a classification or regression technique to the meta-dataset can be used to

predict the most adequate target attribute (a ML technique and/or HP configuration) for

a new dataset, using the MFs as predictive attributes.

Recent studies in the MtL literature have been concerned with investigating different

types of MF extracted in order to characterize a dataset. These types, categorizing 88 or
1http://www.ml4aad.org/automl/

1

CHAPTER 1. INTRODUCTION

more different MFs are i) simple measures, such as number of classes, ii) statistics mea-

sures, such as skewness and kurtosis, iii) information theoretic measures, such as attribute

entropy, iv) landmarking measures such as the performance and execution times of some

basic ML algorithms on the dataset, v) features extracted from decision tree models, vi)

measures that analyze the complexity of a problem and vii) measures based on complex

network properties.

The experiments which are provided by the supervisor of this thesis that is not yet

published showed that the choice of a suitable combination of MF types for HP recom-

mendation seems to be data dependent and there is no MF type which is clearly superior

to other MF types on all datasets. However, only the combinations of the 8 MF types

were investigated, i.e. either none or all of the MFs belonging to the same MF type were

included in the choice, leading to 28 − 1 = 255 different combinations. To investigate the

full range of various combinations of MFs, not only the combinations of MF types, would

require more than 280 cases to try what is infeasible. The goals of this thesis are to:

• propose an approach for investigating the utility of various MF combinations with

means of genetic algorithms (GA);

• implement the proposed approach in the experiment involving different classification

algorithms on various datasets used in that experiments;

• analyze the results of the experiment and provide insights for future research in MtL.

1.2 Thesis outline

The thesis is organized as follows:

• Chapter 2 provides an explanation to the machine learning algorithms that are used

in this experiment.

• Chapter 3 gives an detailed explanation of the datasets that are used in this exper-

iment, the hyper-parameters ranges for the machine learning algorithms, the meta-

features that are extracted and used in this experiment and the genetic algorithm.

• Chapter 4 provides a detailed analysis for the results of this experiment.

2

CHAPTER 1. INTRODUCTION

• Chapter 5 draws our conclusions and provides the future work for this thesis.

3

CHAPTER 2. MACHINE LEARNING

Chapter 2

Machine learning

2.1 Binary classification Models

2.1.1 K-Nearest Neighbors

K-Nearest Neighbor is a supervised machine learning algorithm that can be used for

classification and regression problems. It compares the new samples of the dataset to the

existing ones that were kept during the prediction process. In fact, it doesn’t make actual

learning. That’s why it is called a memory-based algorithm. Prediction in K-NN algorithm

is easy in the way that for any new sample it looks for K most similar samples based on

some distant metrics. After that, it assigns a class label to the new sample by a majority

voting as it shown in the following figure.

Figure 2.1: K−Nearest Neighbor algorithm[Ras17].

The triangle class label as shown in the above figure was assigned to the new data

1

CHAPTER 2. MACHINE LEARNING

sample(?) according to majority nearest neighbors. There are different distant functions to

compare the similarity between the data samples which are the following:

1. Euclidean distance:

Euclidean distance is the square root of the sum of the squared differences between

two points x,y and it is calculated as follows:

D(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 ++ (xn − yn)2

=

√√√√ n∑
i=1

(xi − yi)2

2. Hamming Distance:

Hamming Distance is the number of bits where two binary vectors differ and it is

calculated as follows:

D(x, y) =
n∑
i=1

(xi ⊕ yi)

where ⊕ denotes the exclusive-or (XOR) operator.

3. Manhattan Distance:

Manhattan Distance is the sum of the absolute difference between two points and it

is calculated as follows:

D(x, y) =

n∑
i=1

|(xi − yi)|

4. Minkowski Distance:

Minkowski Distance is the generalized metric distance of both Euclidean distance

and Manhattan distance and is calculated as follows:

D(x, y) = (
n−1∑
i=1

|(xi − yi)|p)(1/p)

• When p=1, it is equal to Manhattan distance.

• When p=2, it is equal to Euclidean distance.

2

CHAPTER 2. MACHINE LEARNING

The Classification result depends on the selected distance function. In our implementa-

tion, we used KNeighborsClassifier that is available in scikit−learn package as it is shown

in the following table:

KNeighborsClassifier1

python

A. Building the classifier:

class KNeighborsClassifier(n_neighbors=5, weights=’uniform’, metric=’minkowski’)

B. Parameters:

− n_neighbors: number of neighbors.

− weights: weight function used in prediction.

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

predict_proba(X): Return probability estimates for the test data X.

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

Table 2.1: K-NN Implementation in Python Scikit-learn package

As it is shown in table 2.1, You can change the distance calculation for k−neighbors

algorithm[KNeighborsClassifier] by using the weights parameter. The default value for it

is uniform which weighs all data points equally. One can define his own function and pass

it as a value for weights parameter.

K-Nearest Neighbors algorithm depends on the size of the neighborhood whose best

value can be found by trying different values. In this research, we made a grid for this

parameter and we tried with all values in that grid through k-fold cross validation process

which is described in section 2.3.2. As the value of K increases, more neighbors that give

smoother boundaries will be gotten. If it’s too small, then the resulting model will be

susceptible to the noise in the dataset. If K is set properly, a good generalization can be
1**More information can be found on the following website:
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.

html

3

CHAPTER 2. MACHINE LEARNING

achieved.

It is shown in Figure 2.2 that K-NN classifier which is applied to backache dataset

peaks in accuracy around K=5. After that, it becomes stable. X-axis in figure 2.2 refers to

the number of neighbors and Y-axis refers to accuracy which is defined in 2.2.1.

Figure 2.2: K−NN accuracies with different K values

In our experiment, we used a wide range of k values with K-fold cross validation process

which is mentioned in section 3.2.

2.1.2 Logistic regression

Logistic regression is a binary classification algorithm that is used in different fields

mainly in biostatistics. It is also used as a prototype for some classification algorithms.

Logistic regression depends on a probability function that gives the input a chance to

belong to any of the two classes. In this experiment, we deal with a binary classification

problem [‘0’ or ‘1’].

The probability function in the logistic regression is the Sigmoid function which is:

hθ(x) =
1

1 + e−θ0+θx

where θ0 is called bias. The result for the logistic regression function is always between

zero and one as it is shown in the following figure for the range [-6,6]:

4

CHAPTER 2. MACHINE LEARNING

Figure 2.3: Logistic regression algorithm

The inverse of logistic regression function is the logit function which is the logarithm

of the odds ratio2:

F (x) = ln
F (x)

1− F (x)
= θ0 + θx

We use the scikit-learn implementation of logistic regression through LogisticRegression

Class as shown in the following table:

LogisticRegression3

python

A. Building the classifier:

class LogisticRegression(penalty=’l2’, C=1.0)

B. Parameters:

− penalty: penalization term.

− C: Inverse of regularization strength

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

predict_proba(X): Return probability estimates for the test data X.

2The odds of an event is the probability of that event divided by the probability of its complement. It
can found from the logit function by exponentiating that function.

3More information can be found on the following website:
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html

5

CHAPTER 2. MACHINE LEARNING

y_score t̄est_classifier.predict_proba(validation_X_test)[:, 1]

Table 2.2: Logistic regression Implementation in Python Scikit-learn package

Prediction rule:

It was mentioned that the output of the logistic regression model is a probability as it

estimates the conditional distribution P(y|x). The logistic regression model is derived

from the assumption that the labels are distributed according to Bernoulli distribution.

Thus, the conditional probability of the positive class is d=P(1|x) where x is the feature

vector and the conditional probability of the negative class is P(0|x)= 1-d. The linear

combination θ0 + θx identifies a hyperplane that separates the positive class from the

negative one, so for any positive sample, we have θ0 + θx ≥ 0 where we have θ0 + θx ≤ 0

for the negative class.

Training algorithm:

Logistic regression minimizes its associated lost function4 to provide the best

hypothesis as follows:

where hθ(x) is defined in equation 2.1.2 and y is the actual label which is zero in case of

the negative class and one for the positive class.

Regularization:

In this experiment, L1 and L2 regularization techniques were used to avoid over-fitting

problem in the Logistic regression models which can happen due to a large number of

parameters and a small number of training samples. L1 is the sum of the weights while

L2 is the sum of the squared weights. L2 regularized logistic regression solves the

following optimization problem:
4loss function or cost function is a function that maps an event or values of one or more variables onto a

real number intuitively representing some "cost" associated with the event. https://en.wikipedia.org/
wiki/Loss_function

6

CHAPTER 2. MACHINE LEARNING

[PVG+11]

where w is the weights parameter, Xi denotes the value of the ith attribute of X and C

denotes the inverse of regularization strength. L1 regularized logistic regression solves the

following problem:

[PVG+11]

The differences between L1 and L2 regularized logistic regressions are summarized in the

following table:

L2 Regularization L1 Regularization

Computationally efficient Computationally inefficient

No sparse5outputs Leads to sparse outputs

Table 2.3: Comparison of L1 and L2 regularizations.

As there is no rule to select the best values for C and penalty, we prepare a grid with a

wide range of values and we try with all values in that grid through the K-folds cross

validation process which is described in details in section 2.3.2. You can see in the

following figure an example of classifying 8x8 images of digits into two classes: 0-4 against

5-9. The figure shows different values of C and penalty.
5Sparse means that most entries in a matrix (or vector) are zero and only very few entries is non-zero.

L1-norm produces many coefficients with zero values.

7

CHAPTER 2. MACHINE LEARNING

Figure 2.4: L1 and L2 penalty with different values of C in Logistic regression[PVG+11]

It is shown in the above figure that L1 penalty leads to sparse outputs while L2 doesn’t.

2.1.3 Support vector machine:

Support vector machine is a supervised learning algorithm that can be used for classi-

fication and regression analysis. It works with the linear classification but can also perform

a non-linear classification by a simple trick known as a kernel trick. In addition to that, it

provides a good generalization error [the prediction error when applying it to unseen data]

as it tries to find the best hyperplane that maximizes the margin between the two classes.

Data points on the margin are known as support vectors as shown in the following figure:

8

CHAPTER 2. MACHINE LEARNING

Figure 2.5: Support Vector machine[Say11]

The decision boundary [separating hyperplane] can be given by the following equation:

w · x+ b = 0

where w is the normal vector to the hyperplane and b is the bias[the offset of the hyperplane

from the origin along the normal vector].

The support vectors define two planes parallel to the separating hyperplane: one hy-

perplane for the positive class described by the following equation:

w · x+ b ≥ +1

and the other one for the negative class described by:

w · x+ b ≤ −1

We can find w and b by solving the following optimization objective function:

min
1

2
‖w‖2

subject to yi(w · xi + b) ≥ 1, ∀xi [Say11]

In case of non-linear data, the support vector machine handles it by using kernel func-

9

CHAPTER 2. MACHINE LEARNING

tion K(xi · xj) which transforms all data points to a higher dimensional feature space to

make it linearly separable as shown in the figure 2.6. The kernel trick ensures that we don’t

need to transform these points to a higher dimensional space.

Figure 2.6: Non-Linear transformation in Support Vector machine[Say11]

The most used kernels are:

• Polynomial Kernel and is given by the following equation:

k(xi · xj) = (xi · xj)d

where d is the order of the polynomial.

• Gaussian or Radial Basis Function (RBF) and is given by the following equation:

exp(−
∥∥xi − xj∥∥2

2σ2
)[Say11]

where σ is the width of the kernel.

In this experiment, we use different kernels that are specified by the keyword kernel as

you can see in the following table

sklearn.svm.SVC6

6More information can be found on the following website:
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

10

CHAPTER 2. MACHINE LEARNING

python

A. Building the classifier:

−Linear : svm.SV C(kernel =′ linear′, C = 1.0)

−Polynomial : svm.SV C(kernel =′ poly′, degree = 3, C = 1.0, gamma =′ auto′)

−Rbf : svm.SV C(kernel =′ rbf ′, gamma =′ auto′, C = 1.0)

−Sigmoid : svm.SV C(kernel =′ sigmoid′, gamma =′ auto′, C = 1.0)

B. Parameters:

− C: Penalty parameter C of the error term.

− kernel : Specifies the kernel type to be used in the algorithm.

− degree: Degree of the polynomial kernel function

− gamma: Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

decision_function(X): - Distance of the samples X to the separating hyperplane.

y_score = test_classifier.decision_function(validation_X_test)[:, 1]

Note: decision_function method is used to compute the ROC AUC score.

Table 2.4: Support vector machine Implementation in Python Scikit-learn package

2.1.4 Decision Trees

Decision tree algorithm is a supervised learning algorithm which is used to build clas-

sification and regression models in the form of a tree structure. The idea of this algorithm

is to partition the training dataset into smaller subsets by splitting the features based on

some threshold until you reach the leaf nodes. The resulting tree has decision nodes and

leaf nodes. The Leaf node represents the class label while the decision node consists of two

or more branches and each node in the branch corresponds to one feature.

This algorithm tries to put the best predictor of the training dataset at the root node

of the tree in each level and after that the algorithm splits the training dataset to smaller

subsets in a way that each subset will contain instances with similar values. This process

will continue until we reach the leaf nodes for each branch of the tree as you can see in the

11

CHAPTER 2. MACHINE LEARNING

figure.

Figure 2.7: Decision Tree Classification[Ras17].

The most important thing in the decision tree implementation is to identify the best

predictor attribute to be considered as a root node for each level of the tree structure

[feature selection]. There are some measures to cope with the selection process which are:

• Entropy: Entropy for given node t is:

Ih(t) = −
c∑
i=1

p(i|t) log2 p(i|t) [Ras17]

Note: p(i|t) is the relative frequency of class i at node t [MSK05].

For binary classification problems, If only one class exists in the node[all of examples

are positive or all of them are negative],then the entropy will be zero. If the number

of the positive examples is equal to the number of the negatives then the entropy will

be 0.5. For each possible split, the split that has the lowest entropy will be selected.

• Gini index:

Gini index is a metric to check how often the random chosen element may be identified

incorrectly. Thus, a feature that has a low Gini index will be selected.

12

CHAPTER 2. MACHINE LEARNING

Gini Index for a given node t is:

IG(t) =
c∑
i=1

p(i|t)(−p(i|t)) = 1−
c∑
i=1

p(i|t)2 [Ras17]

Note: p(i|t) is the relative frequency of class i at node t [MSK05].

Gini index will be 0.25 if the binary classes are balanced in a perfect way and it will

be zero if all examples are either positive or negative.

Over-fitting in Decision Tree:

Over-fitting problem can happen in Decision Tree in case if the algorithm tries to go

deeper in the partition process to reduce the training error but at the same time with an

increased test error. According to that, It may lose the generalization capability. This may

happen due to outliers and irregularities in the dataset.

There are two ways to avoid the over-fitting problem in Decision Tree:

• Pre-Pruning[top-down approach]:

In this strategy, The algorithm stops the partition process of the dataset early if its

goodness measure is less than the threshold value.

• Post-Pruning[bottom-up approach]:

This strategy works in the opposite direction. It generates the complete tree and

after that starts the elimination process of the nodes that their depth values[to the

root node] is more than the threshold value.

In our implementation, we use DecisionTreeClassifier that is available in scikit-learn

package as you can see in the following table:

DecisionTreeClassifier7

python

A. Building the classifier:

class DecisionTreeClassifier(criterion =′ gini′,max_depth = None,

7More information can be found on the following website:
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.

html

13

CHAPTER 2. MACHINE LEARNING

min_samples_split = 2,min_samples_leaf = 1,maxfeatures = None)

B. Parameters:

− criterion: The function to measure the quality of a split.

− max_depth: The maximum depth of the tree

− min_samples_split: The minimum number of samples required to split

an internal node

− min_samples_leaf: The minimum number of samples required to be at

a leaf node:

− max_features: .

The number of features to consider when looking for the best split

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

predict_proba(X): Return probability estimates for the test data X.

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

Note: predict_proba method is used to compute the AUC-ROC score.

Table 2.5: Decision Tree implementation in Python Scikit-learn package

2.1.5 Random Forest:

Random Forest is an ensemble learning algorithm that can be used for classification and

regression problems. Ensemble learning means combining more than one model together

to improve the generalization error. The Random Forest algorithm works with either con-

tinuous or categorical predictors. It operates by building multiple decision trees from the

training dataset and the output is selected by the majority voting which means the most

frequently predicted class.

The idea of the ensemble method is to combine the predictions from different machine

learning algorithms instead of just use one algorithm to build a robust model. Each classifier

alone is a weak leaner but when you combine a group of classifiers, you will get a strong

learner as shown in the figure 2.8.

Each classifier in the figure referred by a gray curve is a weak learner while the classifier

14

CHAPTER 2. MACHINE LEARNING

referred by a red curve is a much better approximation to the data more than the other

classifiers individually.

Figure 2.8: Ensemble learning Example on ozone and temperature datasets [Est17]

Random Forest works based on the bagging technique. Bagging technique works on

that dataset as follows:

• Create bootstrap samples (random samples with replacement) from the training

dataset.

• Decision tree Classifier is fitted on each bootstrap sample.

• the final prediction for the new samples can be taken according to the majority vote

in the forest as shown in the figure 2.9

15

CHAPTER 2. MACHINE LEARNING

Figure 2.9: Random Forest steps [MA15]

Random Forest provides an improvement of the bagging technique by adding an addi-

tional randomization step for the features selection. The additional step tries to solve the

problem of high correlations between the outputs of the different trees in the forest. If one

or more features have a strong effect on the target output, then they will be selected in

many trees which leads to a high correlation between them. As a result of that, we will get

a model with poor predictive performance.

Instead of looking for all features in the dataset to select the best one for the split-

ting process as the decision tree did, the random forest adds a randomization step that

each decision tree in the forest uses a random subset of features for selecting the optimal

split point. As a result of that, the decision tree algorithm avoids choosing the strong fea-

tures [predictors] many times, and thus we will get a model with an improved predictive

performance.

The number of features for the Random forest algorithm is a hyper-parameter which

means it should be chosen carefully as it affects the performance of the resulting model. In

our implementation, we tried with different values for this hyper-parameter and for others

as well. The details for them can be found in table 2.6.

RandomForestClassifier8

8More information can be found on the following website:

16

CHAPTER 2. MACHINE LEARNING

python

A. Building the classifier:

class RandomForestClassifier(n_estimators = 10, criterion =′ gini′,

max_depth = None,min_samples_split = 2,min_samples_leaf = 1,

max_features =′ auto′, bootstrap = True)

B. Parameters:

− n_estimators :The number of trees in the forest.

− Criterion: The function to measure the quality of a split

− max_features: The number of features to consider when looking for

the best split

− max_depth: The maximum depth of the tree

− min_samples_split: The minimum number of samples required to split

an internal node.

− min_samples_leaf: The minimum number of samples required to be at

a leaf node.

− bootstrap: Whether bootstrap samples are used when building trees.

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

predict_proba(X): Return probability estimates for the test data X.

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

Table 2.6: Random Forest Implementation in Python Scikit-learn package

2.1.6 Extreme Gradient Boost [Xgboost] algorithm:

Xgboost is a software library that is an optimized version of Gradient Boosting algo-

rithm. Gradient boosting machine is a supervised machine learning algorithm that can be

used for classification and regression problems. It builds a prediction model by merging a

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

17

CHAPTER 2. MACHINE LEARNING

series of weak prediction models in an iterative way to build a stronger one.

Xgboost is available for Java, R, C++, Julia and even from command line inter-

face(CLI). It’s a more efficient implementation compared to gradient boosting algorithms.

It is faster than other gradient boosting algorithms as shown in Figure 2.10.

Figure 2.10: Speed Benchmark Result [CH15]

Xgboost is used for supervised learning problems which training data is used to predict

a target value. It contains two kinds of solvers: the linear solver and the tree learning algo-

rithms which makes it more efficient and faster compared to gradient boosting algorithms.

It is used for a lot of competitions on kaggle and has a lot of advantages like:

1. Distributed processing: Xgboost can do a parallel computation on a single machine.

2. Dealing with missing values: Xgboost deals with missing values not like the other

algorithms in which you must handle the missing values before applying the machine

learning algorithms. In this experiment, the datasets doesn’t have missing values.

3. Accuracy: Xgboost gives good results.

4. Regularization: Xgboost has a regularization parameter which is not found on Gra-

dient Boosting implementation and because of that, we can overcome with the over-

fitting problem.

18

CHAPTER 2. MACHINE LEARNING

5. Xgboost has its own implementation of cross validation.

6. Feasibility: In Xgboost, you can use your own optimization objective function and

evaluation.

In this experiment, we use the XGBClassifier class that is available in the xgboost

library for python as shown in the table 2.7:

XGBClassifier9

python

A. Building the classifier:

class xgboost.XGBClassifier(max_depth = 3, learning_rate = 0.1,

n_estimators = 100, gamma = 0,min_child_weight = 1,

subsample = 1, colsample_bytree = 1, reg_alpha = 0)

B. Parameters:

− max_depth: Maximum tree depth for base learners.

− learning_rate: Boosting learning rate (xgb’s “eta”)

− n_estimators: Number of boosted trees to fit.

− objective: Specify the learning task and the corresponding learning objective

or a custom objective function to be used.

− gamma: Minimum loss reduction required to make a further partition on

leaf node of the tree.

− subsample: Subsample ratio of the training instance.

− colsample_bytree: Subsample ratio of columns when constructing each tree.

− reg_alpha: L1 regularization term on weights

− reg_lambda: L2 regularization term on weights

C. Making prediction:

Predict(X): Predict the class labels for the provided data.

temp_y_test_pred = test_classifier.predict(validation_X_test)

predict_proba(X): Return probability estimates for the test data X.

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

9More information can be found on the following website:
http://xgboost.readthedocs.io/en/latest/python/python_api.html

19

CHAPTER 2. MACHINE LEARNING

Note: predict_proba method is used to compute the AUC-ROC score.

Table 2.7: XGBoost classifier Implementation in Python

2.2 Performance metrics for binary classification:

Different metrics are used to measure the performance of a binary classifier.

2.2.1 Accuracy

Accuracy is the proportion of samples which are classified correctly among the whole

samples of the dataset. It is calculated as follows:

F (X) =
TN + TP

TN + TP + FP + FN

where:

• TP refers to True positive: As an example of it, if One has a positive result for a

cancer disease test and he has that disease, then it’s called a true positive.

• TN refers to True negative: As an example of it, if the result of a medical test for

a cancer disease is negative for someone doesn’t have that disease, then it’s called a

true negative.

• FP refers to False positive: As an example of it, if the result of a medical test for

a cancer disease is positive for someone doesn’t have that disease, then it’s called a

false negative.

• FN refers to False negative: As an example of it, if the result of a pregnancy test is

negative and the woman is pregnant, then it’s called a false negative.

2.2.2 Imbalance metrics

• Balance Accuracy:

Balanced accuracy is the arithmetic mean of sensitivity and specificity as follows:

20

CHAPTER 2. MACHINE LEARNING

TP/(TP + FN) + TN/(TN + TP)

2
=
sensitivity + specificity

2

• Precision:

Precision is a measure for the positive predictive value and is defined as follows:

Precision =
TP

TP + FP

• Recall:

Recall is a measure for the true positive rate and is defined as follows:

Recall =
TP

TP + FN

High precision means a low false positive rate and a high recall means a low false

negative rate. High precision and High recall means that you have accurate results but

if you have a high recall and low precision, then it means that most of the predicted

values are false. At the same time, if you have a low recall and a high precision,

then it means that most of the predicted values are correct. The best case for your

model when you have a high precision and a high recall.One way to summarize both

metrics: precision and recall is the F-score.

• F-score: F-score is a harmonic mean for both recall and precision as in the following:

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

• Matthews Correlation Coefficient[MCC]:

The Matthews correlation coefficient is a measure of the quality of binary classifica-

tions and it is counted as a balanced measure even though the sizes of the classes are

different.It is calculated as follows:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The value for MCC is between -1 and +1 in which -1 means an inverse prediction,

21

CHAPTER 2. MACHINE LEARNING

+1 means a perfect prediction and zero means an average random prediction.

• Cohen’s kappa:

Cohen’s kappa is a statistic that measures inter-annotator agreement. Suppose you

have two raters classify different objects into two categories Yes and No as it is shown

in the following table:

Rater 1

Yes No

Rater2 Yes TP FN

No FP TN

Table 2.8: Hyper−parameters

As it is shown in the table, Values on the main diagonal of the table represents the

counts of agreements. Cohen’s Kappa is calculated as follows:

n
∑C

i=1 xii −
∑C

i=1 xi · x.i
n2 −

∑C
i=1 xi · x.i

[SGH15]

where:

– xii is the cell count in the main diagonal in Table 2.9.

– n is the number of examples in the dataset.

– C is the number of class labels.

– xi, x.i are the rows and columns total counts respectively.

In this experiment, we use the sklearn package to import all metrics as shown in the

following listing 2.1:

Average_precision_recall = average_precision_score(validation_y_test.ravel(),

y_score)

accuracy=metrics.accuracy_score(validation_y_test.ravel(), temp_y_test_pred)

Classification_auc = roc_auc_score(validation_y_test.ravel(), y_score)

F_measure=metrics.f1_score(validation_y_test.ravel(), temp_y_test_pred)

matthews_corr=matthews_corrcoef(validation_y_test.ravel(), temp_y_test_pred)

22

CHAPTER 2. MACHINE LEARNING

coh_kapp=cohen_kappa_score(validation_y_test.ravel(),temp_y_test_pred)

balance_accuracy=recall_score(validation_y_test.ravel(),

temp_y_test_pred,average='macro')

precision=metrics.precision_score(validation_y_test.ravel(), temp_y_test_pred)

call=metrics.recall_score(validation_y_test.ravel(), temp_y_test_pred)

Listing 2.1: Different performance metrics used in this thesis from Sklearn package

2.2.3 Probabilistic classifiers metrics

In case the output of the classifier is a probability, the performance metric can be:

Receiver Operating Characteristics curve(ROC) or Precision-Recall curve which are de-

scribed in this section.Most of classifiers provide either predict_prob or decision_function

methods for evaluating the degree of certainty of your predictions.

In this experiment, we use predict_prob for knn, logistic regression, decision tree,

random forest and neural network algorithm. For support vector machine, we use deci-

sion_function for calculating the area under curve and the average precision value.

• Receiver Operating Characteristics curve(ROC)

A Receiver Operating Characteristics curve(ROC) is a graphical representation of

the true positive rate against the false positive rate for different thresholds. ROC

curve is used for visualizing and selecting the classifiers based on their performance.

In Roc curve, x-axis represents the False positive rate and Y-axis represents the True

positive rate as shown in the following Figure.

23

CHAPTER 2. MACHINE LEARNING

Figure 2.11: An example of ROC curve of the LogisticRegression classifier over 3-fold cross
validation[Ras17]

As shown in figure 2.11 that for a perfect classification, which means no errors, the

graph should be in the top-left corner in a position that True positive rate (TPR)

equals one and False positive rate (FPR) equals zero.The diagonal dashed line is the

ROC curve of a random classifier.

We can express the ROC curves numerically by calculating the area under it. It is

usually referred by AUC-ROC. In this case, AUC score for a random classifier is

equals to 0.5 and 1.0 for a perfect classifier.

In this experiment, python scikit-learn package is used for computing AUC score as

it is shown in the following table:

AUC-ROC score10

python

A. Implementation:

sklearn.metrics.roc_auc_score(y_true, y_score, average =′ macro′,
10More information can be found on the following website:
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

24

CHAPTER 2. MACHINE LEARNING

sample_weight = None)

B. Parameters:

− y_true:True binary labels in binary label indicators.

− y_score: Target scores, In this experiment it is the probability estimates of the

positive class and it is calculated as follows:

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

Table 2.9: AUC-ROC Score Implementation in Python Scikit-learn package

• Precision-Recall curve:

It’s similar to the ROC curve, it is a graph of precision versus recall for different

thresholds as it is shown in figure:

Figure 2.12: precision-recall curve[BHK15]

As it is shown in the Figure 2.12, the prefect classifier is located in the top-right corner

of the graph. The dotted line of Precision-recall graph is a random classifier which has

an average precision equal to the actual positive (P) divided by the sum of the actual

positive (P) and the actual negative (N). As the area under ROC curve,The graph

of the Precision-Recall can be expressed numerically by average precision score. For

a perfect classifier it’s equal 1.0 and 0.5 for a random classifier.

Average Precision score11

11More information can be found on the following website:

25

CHAPTER 2. MACHINE LEARNING

python

A. Implementation:

sklearn.metrics.average_precision_score(y_true, y_score, average =′ macro′,

sample_weight = None)

B. Parameters:

− y_true:True binary labels in binary label indicators.

− y_score: Target scores, In this experiment it is the probability estimates of the

positive class and it is calculated as follows:

y_score = test_classifier.predict_proba(validation_X_test)[:, 1]

Table 2.10: Average Precision Score Implementation in Python Scikit-learn package

2.3 Model Evaluation

Model evaluation is an important part of the development process to get the best model

that is neither biased nor overoptimistic. In data-mining, you can’t use the same data for

the training and evaluation process because your model will be over-fitted or may be over

optimistic. To avoid that issue, different methods use another dataset called test dataset

[unseen data] for the evaluation. These methods are the following:

2.3.1 Hold−Out process

In this technique, the dataset is divided to different parts: one is the training set used

to build the model and the other one is the validation set which is used for the evaluation

process to ensure that the model is not over-fitted. The validation set is different form the

training set so we are sure that we use unseen data for the evaluation process that will give

us a less biased model. Over-fitting can be detected if the training performance increases

while the validation performance decreases.

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_
score.html

26

CHAPTER 2. MACHINE LEARNING

2.3.2 K-folds Cross−Validation

In this way, the dataset is divided into k-disjoint partitions called folds which are

roughly equal in size . One of the k-folds is used as a validation set while the remaining

k-1 folds are combined to form the training set. This is done K times, in each time, one of

the K-folds leaves out for the validation as follows [Alp10]:

V1 = X1 T1 = X2 ∪X3 ∪ ... ∪XK

V2 = X2 T2 = X1 ∪X3 ∪ ... ∪XK

.....

.....

.....

VK = XK TK = X1 ∪X3 ∪ ... ∪XK−1

In this research’s experiment, the K-folds cross validation is done as shown in the

following listing 2.2:

for fold in range(num_folds):

validation_X_test = X_train_folds[fold]12

validation_X_test=np13.array(validation_X_test)

validation_y_test = y_train_folds[fold]

validation_y_test=np.array(validation_y_test)

temp_X_train = np.concatenate(X_train_folds[:fold] +

X_train_folds[fold + 1:])

temp_y_train = np.concatenate(y_train_folds[:fold] +

y_train_folds[fold + 1:])

Listing 2.2: K-folds cross validation implementation in Python

Imbalanced data refers to a problem with classification tasks where the classes are not

represented equally. As the imbalance issue for the binary classes occurs in the datasets,

we try to keep each fold to have different classes of positives and negatives to calculate the
12In each fold, we take one fold from the training dataset
13This is the NumPy package for scientific computing with Python. http://www.numpy.org/

27

CHAPTER 2. MACHINE LEARNING

area under the curve and to get a better model.

For dividing the dataset to different k-folds, I wrote my own implementation which

divides the dataset to positives and negatives in which a good ratio of both classes has

been achieved for each fold.

If you have for example 4 negatives and 2 positives, then the number of folds will be

the smallest one which is 2 and the two positives will be distributed among the two folds,

but if you have 10 positives and 6 negatives, in this case the number of folds will be 5 as

we use the five folds for all datasets that have more than five negatives or five positives.

You can see the implementation of the method that divides our datasets to k-folds in the

following listing 2.3:

def k_folds(ndata,pdata):

lp=pdata14.shape[0]

ln=ndata15.shape[0]

if lp<ln:

if lp>=5:

nfolds=516

else:

nfolds=lp

else:

if ln>=5:

nfolds=5

else:

nfolds=ln

avg1 = ln / nfolds

avg2 = lp / nfolds

out1 = []

out2=[]

finalout2=[]

last1 = 0

14refers to the positive part of the dataset in which the class label equals 1
15refers to the negative part of the dataset in which the class label equals 0
16max number of folds which is used in this experiment is 5

28

CHAPTER 2. MACHINE LEARNING

last2=0

i=0

while last1 < ln:

out1.append(ndata[int(last1):int(last1 + avg1)])

last1 += avg1

while last2 < lp:

out2.append(pdata[int(last2):int(last2 + avg2)])

last2 += avg2

for i in range(len(out1)):

f=pd.concat([out1[i],out2[i]])

finalout2.append(f)

return (finalout2,nfolds)

Listing 2.3: K-folds function which divides the dataset to k-disjoint partitions.

29

CHAPTER 3. PROPOSED EXPERIMENT

Chapter 3

Proposed Experiment

3.1 Datasets

The description of the 62 datasets from different sources [BL14] which are used for this

experiment is shown in table 3.1. Each dataset is described with its name, the number of

instances in it (Cases), the number of numerical attributed (Num), the number of categori-

cal attributes (Cat), the number of the positive instances for the target attribute(Positive)

and the number of the negative instances for the target attribute(Negative).

Name Cases Num Cat Positive Negative

acuteinflammationsnephritis 99 1 5 44 55

analcatdata_boxing1 120 0 3 78 42

analcatdata_boxing2 132 0 3 61 71

analcatdata_creditscore 100 3 3 73 27

analcatdata_lawsuit 263 3 1 19 244

Appendicitis 106 7 0 21 85

autoUniv−au1−1000 997 20 0 739 258

Backache 180 5 26 25 155

Banana 5292 2 0 2373 2919

bank−marketing 4521 7 9 521 4000

banknote−authentication 1348 4 0 610 738

30

CHAPTER 3. PROPOSED EXPERIMENT

blood−transfusion−service 533 4 0 149 384

breast−cancer−wisconsin 463 9 0 238 225

Bupa 341 6 0 199 142

climate−simulation−craches 540 20 0 494 46

connectionist−mines−vs−rocks 208 6 0 97 111

fertility−diagnosis 100 9 0 12 88

habermans−survival 289 3 0 79 210

heart−disease−processed−hungarian 293 13 0 106 187

Hepatitis 155 6 13 123 32

hill−valley−with−noise 1212 100 0 606 606

horse−colic−surgical 300 13 14 109 191

indian−liver−patient 570 9 1 164 406

Ionosphere 350 33 0 225 125

kr−vs−kp 3196 0 36 1527 1669

leukemia−haslinger 100 50 0 51 49

lsvt−voice−rehabilitation 126 307 0 84 42

mammographic−mass 689 5 0 321 368

molecular−promotor−gene 106 0 57 53 53

Monks1 432 6 0 216 216

Monks2 432 0 6 142 290

Monks3 438 6 0 229 209

Mushroom 8124 0 21 3916 4208

Ozone−eighthr 2526 72 0 160 2366

ozone−onehr 2528 72 0 73 2455

Parkinsons 195 22 0 147 48

Phoneme 5395 5 0 1577 3818

pima−indians−diabetes 768 8 0 268 500

planning−relax 176 12 0 50 126

31

CHAPTER 3. PROPOSED EXPERIMENT

prnn_crabs 200 6 1 100 100

qsar−biodegradation 1052 41 0 354 698

qualitative−bankruptcy 103 0 6 78 25

Ringnorm 7400 20 0 3736 3664

Saheart 462 8 1 160 302

seismic−bumps 2578 11 4 2408 170

Spambase 4210 57 0 1679 2531

spectf−heart 267 44 0 212 55

spect−heart 228 0 22 101 127

statlog−australian−credit 690 8 6 307 383

statlog−german−credit 1000 7 13 300 700

statlog−german−credit−numeric 1000 24 0 300 700

statlog−heart 270 13 0 120 150

steel−plates−faults 1941 33 0 673 1268

thoracic−surgery 470 3 13 400 70

steel−plates−faults 1941 33 0 673 1268

thyroid−hypothyroid 3086 7 18 2945 141

thyroid−sick−euthyroid 3086 7 18 282 2803

tic−tac−toe 958 0 9 626 332

Voting 281 0 16 92 189

Wdbc 569 30 0 212 357

wholesale−channel 440 7 0 142 298

Wilt 4819 5 0 257 4562

Table 3.1: The training datasets of the thesis

32

CHAPTER 3. PROPOSED EXPERIMENT

3.2 Hyper-parameter Ranges

The distribution of all hyper-parameters that were used in this experiment are described

in the following table 3.2. It were selected from different research papers which are cited

at each algorithm.

Name Parameters Range

K-NN

[BB10] [BS09] [ZX17]
k [1,51]

Support Vector Machine

[ISW16] [LMK11]

C

Gamma

Kernel

Degree

[10−3 − 104]

[10−3 − 104]

Linear, sigmoid, rbf, poly

1-5

Random Forest

[LKRK13] [FE17] [PBGS16]

[EOY17] [DAG15]

n_estimators

max_features

min_samples_leaf

max_depth

min_samples_split

bootstrap,

criterion

[1,10000]

[0.1,50]

[1,20]

[1,100,None]

[2,64]

[True, False]

["gini", "entropy"]

Xgboost

[SW17] [RB17] [ZX17]

n_estimators

learning_rate

max_depth

min_child_weight

gamma

reg_alpha

colsample_bytree

subsample

[10, 1200]

[0.0001, 0.9]

[2, 15]

[1, 6]

[0.000001, 1]

[0.00001, 100]

[0.1, 1]

[0.1, 1]

33

CHAPTER 3. PROPOSED EXPERIMENT

Decision Tree

[ZX17] [DF13] [FE17]

max_features

min_samples_leaf

max_depth

min_samples_split

criterion

[0.1,16]

[1,21]

[1,51]

[2,100]

["gini", "entropy"]

Logistic Regression

[LMK11] [JZ16]

logistic_C

logistic_penalty

[10−3, 103]

[”l1”, ”l2”]

Table 3.2: Hyper-parameters Ranges of the applied machine learning algorithms.

3.3 Meta-features Extraction

Meta-learning is an approach for solving the algorithm selection and recommendation

problem. It is used for selecting a suitable machine learning model with best performance

and/or Hyper-parameter(HP) configuration. Meta-features are measures describing dataset

properties and characteristics. They are used in a meta-learning domain. The first step in

Meta-learning is the representation of each dataset by a vector of Meta-features. The next

step is to recode the predictive performance of different machine learning algorithms on

these datasets and after that, a meta-model induced by the application of a classification or

regression technique to the meta-dataset can be used to predict the most adequate target

attribute which can be a machine learning technique and/or HP configuration for a new

dataset.

Three requirements should be taken into account for the development of MFs which

are:

1. Discriminative power: the MFs should have a good discriminative power according

to the given MtL task.

2. Computational complexity: The extraction process of the MFs shouldn’t be too com-

plex. It should be maximum O(n log n) as pointed out by Pfahringer et al. [BPGC00].

3. Dimensionality: The number of MFs shouldn’t be too large compared to the number

of datasets used to avoid the over-fitting problem.

34

CHAPTER 3. PROPOSED EXPERIMENT

The main goal of this thesis is to find those MFs which are correlated well with the

performance metrics of different machine learning algorithms that are used. The MFs are

extracted using the mfe package1 which is implemented in R.

Six types of the MFs are used in this experiment which are summarized in the tables

3.3 and 3.4.

MF type Abbr # Description

General GL General information related to the dataset, also

known as simple measures, such as number of

instances, attributes and classes.

Statistical ST Standard statistical measures to describe the

numerical properties of a distribution of data.

Discriminant DT Measures computed using the discriminant analysis.

Information-theoretic IT Particularly appropriate to describe discrete

(categorical) attributes and their relationship with

the classes.

Model-based MB Measures designed to extract characteristics like the

depth, the shape and size of a Decision Tree model

induced from a dataset.

Landmarking LM Represents the performance of some simple and

efficient learning algorithms.

Table 3.3: MF types used in this experiment with their abbreviations2

Most studies in MtL focus on investigating different types of MFs for data character-

ization. For data characterization, three main types of MFs can be identified which are:

simple, statistical and information-theoretic measures, land-markers and model-based mea-

sures. Simple, statistical and information-theoretical MFs are extensively used in MtL to

summarize the dataset. However, new types of MFs have been proposed based on some ap-

proaches like model-based approach [HBK00] in which the model is built from the dataset
1Rivolli,A.,Garcia,L.P.F.,deCarvalho,A.C.P.L.F.(2017).mfe:Meta-FeatureExtractor.

Rpackageversion0.1.0.http://CRAN.R-project.org/package=mfe
2https://cran.r-project.org/web/packages/mfe/vignettes/mfe-vignette.html

35

CHAPTER 3. PROPOSED EXPERIMENT

and the meta-features are the characteristics of that model. An example of this approach

is the number of leaf nodes in a decision tree. In MtL, this approach is useful for algorithm

recommendation.

Another apporach is the use of landmarking measures [FP01]. They evaluate the per-

formance of different ML techniques on a given dataset. These measures are obtained by

running simple and fast versions of the algorithms such as decision stumps [SW10].

Type MF

GL defective instances,dimensionality,% samples belongs to majority

class,% missing values, total # attributes, total # binary

attributes,total # classes, total # instances,# numeric attributes,

categorical attributes,% binary attributes,% numeric attributes,

% symbolic attributes, std class distribution.

ST absolute correlation, absolute covariance, degree of discreetness,

geometric mean, harmonic mean, interquartile range divided by

the standard deviation, kurtosis, median absolute deviation,

normality, outliers, skewness, standard deviation, trim mean

,variance.

DT cancor, cancor fract, center of gravity,discfct,eigen.fract,

max eigenvalue,min eighenvalue,sdratio,wlambda

IT attributes.concentration, attribute entropy, class.concentration,

class entropy, equivalent.attributes, joint entropy, ,mutual

information, noise to signal ratio

MB average leaf corrobation, branch length, depth, homogeneity,

max depth,# leaves,# nodes, nodes per attribute, nodes per

instance, nodes per level, ,repeated nodes, shape, variable

importance

LM Decision Stump, Elite 1-NN performance, Linear Discriminant

performance, Naive Bayes performance, 1-NN performance,

worst node

36

CHAPTER 3. PROPOSED EXPERIMENT

Table 3.4: MF used in the experiment

3.4 Genetic Algorithms

Genetic Algorithm (GA) is a heuristic search-based optimization technique based on

a natural selection process and evolutionary biology. It is used to find optimized solutions

for difficult problems which can take a long time to be solved. Genetic algorithms are able

to solve constrained and unconstrained optimization problems.

In this thesis, we used the genetic algorithm to find the MFs which are correlated well

with the performance metrics of different machine learning algorithms.

An exhaustive selection of the MFs will result in a lot of different combinations. These

combinations will be 2n where n is the number of the MFs. In fact, we can’t try all

combinations which require a lot of computational work and that’s why genetic algorithm

is used for this kind of problems to select the best combinations.

In genetic algorithm, we have a population of possible solutions (individuals) for a given

problem. For each generation, these individuals undergo recombination and mutation like

in natural genetics to produce new solutions which are better suited to the problem. Each

individual is assigned to a fitness value which is different according to the problem. A higher

chance is given to fitter individuals to mate and produce more sophisticated solutions. The

process of genetic algorithm is described in the following figure:

37

CHAPTER 3. PROPOSED EXPERIMENT

Figure 3.1: Genetic Algorithm. Tree Basic steps of GA: selection, crossover and mutation.
[HLL13].

In this research, individuals are represented using a binary representation. The number

of genes represent the number of MFs (length of the individual) which is in our case 88

MFs. The population size is set to be 100 and the number of generations is set to be 200.

1. Initialization:

The first step in genetic algorithm is to create and initialize the individuals, referred

to as chromosomes. In our experiment, we used DEAP [FDG+12] framework to im-

plement the genetic algorithm. The initialization process for the individuals and the

population is represented in the following code:

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)

toolbox.attr_bool()

toolbox.register("individual", tools.initRepeat, creator.Individual,

toolbox.attr_bool, 88)

toolbox.register("population", tools.initRepeat, list, toolbox.individual)

As genetic algorithm is a stochastic method, the genes are set randomly. The indi-

vidual in our problem looks like:

38

CHAPTER 3. PROPOSED EXPERIMENT

[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1

, 0, 0, 1]

The individual is represented by 88 binary genes as we have 88 MFs. The positive

value [1] means that the corresponding MF is selected whereas the negative value [0]

means that the corresponding MF is not.

2. Selection:

After the population and the individuals are created and initialized, we implement the

fitness function. Fitness function is a function which takes an individual [candidate

solution] as an input and produces the output which decides if this candidate fits with

the problem or not. The implementation of the fitness function is in the following

code:

def eval_func(individual):

f1=[]

f2=[]

r_table=[]

for i in range(len(dfm3)):

a1=algorithm_sim4[algorithm_sim.columns.values[0]].

isin([dfm.iloc[i][0]])

a4=algorithm_sim[algorithm_sim.columns.values[1]].

isin([dfm.iloc[i][0]])

for j in range(len(dfm)):

if i>=j:5

a2=algorithm_sim[algorithm_sim.columns.values[1]].

isin([dfm.iloc[j][0]])

3dfm refers to the meta-dataset.
4algorithm_sim refers to the similarity file which contains all possible combinations between the

datasets. The similarity is calculated according to the performance metric of different machine learn-
ing algorithms. The first and the second columns are the datasets names while the last column represents
the similarity of the corresponding datasets in those two columns.

5This condition is to be sure that the current combination is unique and not duplicated. For example,
the case i=2, j=1 which means that the current combination is D2,D1 will be taken, but the case i=1, j=2
which means that the combination is D1,D2 will be rejected because it’s the same as D2,D1.

39

CHAPTER 3. PROPOSED EXPERIMENT

a3=algorithm_sim[algorithm_sim.columns.values[0]].

isin([dfm.iloc[j][0]])

for k1 in range(len(individual)):6

if individual[k1]==1:

f1.append(dfm.iloc[i][k1+1])

f2.append(dfm.iloc[j][k1+1])

if len(algorithm_sim[(a1)&(a2)])>=1:

r_table.append([dfm.iloc[i][0],dfm.iloc[j][0],

cosine_similarity(f1,f2),

algorithm_sim[(a1)&(a2)].iloc[0]['sim_value']7

])

elif len(algorithm_sim[(a3)&(a4)])>=1:

r_table.append([dfm.iloc[j][0],dfm.iloc[i][0],

cosine_similarity(f1,f2),

algorithm_sim[(a3)&(a4)].iloc[0]['sim_value']

])

del f2[:]

del f1[:]

df1 = pd.DataFrame(data=r_table)

corr_value=df1.iloc[:,2].corr(df1.iloc[:,3])

return corr_value,

It is shown in the above code that the fitness value is the correlation between the

following similarities:

• the similarities between the datasets based on the selected MFs which are set

to one in the individuals.

• the similarities between the datasets based on the performance metric for each

hyper-parameters combinations for the logistic regression model.
6The goal of this loop is to take the values of the MFs in which the genes are set to one.
7is the value of the similarity between the two datasets based on different performance metric

40

CHAPTER 3. PROPOSED EXPERIMENT

The individuals with greater fitness will have a greater probability to be selected for

recombination. The selection operator chooses the individuals for the next generation

based on their fitness level. The number of selected individuals is N/2 where N is the

population size.

In this research, the selection is done based on a Tournament selection. In Tournament

selection, a number Tour of individuals is selected randomly and the best one is

chosen as a parent. The tournament size Tour is the parameter for the tournament

selection and it takes a value from 2 to number of individuals in the population. If

the tournament size is large, then the weak individuals will have a smaller chance to

be selected. In our implementation, we use a tournsize equals to 4 as follows:

too lbox . r e g i s t e r (" s e l e c t " , t o o l s . selTournament , t ou rn s i z e=4)

3. Crossover:

crossover is a genetic operator which takes more than one parent based on the se-

lection operation and produces a new child from them. There are different kinds of

crossover operators that can be used which are the following:

• One Point Crossover:

In one-point crossover, a random single crossover point on both parents organism

is selected and after that all data beyond that point will be swapped between

the two parent organisms get new off-springs as follows:

Figure 3.2: Single point crossover[SS07].

• Two Point Crossover:

In two-point crossover, two points are randomly selected on both parent organ-

41

CHAPTER 3. PROPOSED EXPERIMENT

isms and after that all the data between those two points are swapped to get

new off-springs as follows:

Figure 3.3: Two-point crossover[SS07].

In our implementation, we use two-point crossover as follows:

toolbox.register("mate", tools.cxTwoPoint)

• Uniform Crossover:

In uniform crossover, for each pair of parents, a new crossover mask which has

the same length as chromosomes is created randomly. The resulting offspring

will be as follows:

– if the value is one in the mask , then the gene is copied or swapped from

the first parent

– if the value is zero in the mask, then the gene is copied or swapped from

the second parent.

This means that the offsprings contain mixture genes from each parent as it is

shown in the following figure:

Figure 3.4: Two-point crossover[SS07].

42

CHAPTER 3. PROPOSED EXPERIMENT

4. Mutation:

The resulting off-springs in the crossover operation may be similar to the parents

which will cause a new generation with low diversity. This issue is solved by a mu-

tation operator in which some MFs in the off-springs will be changed randomly. The

MF will be mutated if the generated random number which is between 0 and 1 is

lower than the mutation rate which will be defined by the user, then the MF will be

flipped as it is shown in the following figure:

Figure 3.5: Bit-flipping mutation of parent a to form offspring b[SS07].

43

CHAPTER 4. RESULTS

Chapter 4

Results

In This chapter, we present the results of our experiment. The experiment was divided

into four steps as follows:

1. Applying different machine learning algorithms on our datasets which are mentioned

in chapter 2.

2. Extracting the MFs which are mentioned in section 3.3.

3. Applying the genetic algorithm based on the results of steps 1 and 2 eight times as

we have eight different performance metrics for each machine learning algorithm. It

is mentioned in section 3.4.

4. Applying the frequent MFs mining algorithm on the results of step 3 eight times as

we have eight different results from step 3. Frequent item set mining is one of the

best known and most popular data mining techniques designed to identify elements

that frequently co-occur.

The results of the machine learning algorithms are the measured values of different

performance metrics which are mentioned in section 2.2 . These results and the MFs are an

input for the genetic algorithm as mentioned in section 3.4. We run the genetic algorithms

eight times as we have eight performance metrics which are: balance accuracy, Accuracy,

F-measure, Cohen’s kappa coefficient, Matthews correlation coefficient, recall, precision

and average precision recall.

44

CHAPTER 4. RESULTS

The last resulting population of the genetic algorithm is counted as the best one. As it

is mentioned in section 3.4, we set the population size and the number of generations as

100. After that, The result of the genetic algorithm was the input for the frequent item set

mining which in our case is the FP-Growth algorithm. The support rate for this algorithm

was set to be 100. As we have eight different results from the genetic algorithm according

to the different performance metrics , we run the frequent itemmset mining algorithm eight

times.

The result of the frequent itemset mining for the genetic algorithm according to accu-

racy performance metric is as follows:

MF Name:

model.based.nodes.per.instance

Table 4.1: The MFs which are correlated with the accuracy performance metric.

As it is shown in table 4.1, there is just one MF which correlates with the accuracy

performance metric. Of course, if we set the minimum support less than 100 , we will get

more MFs.

For AUC-ROC metric, we got more MFs as it shown in the following table:

MF Name:

infotheo.attribute.entropy.sd

landmarking.decision.stumps.sd

landmarking.naive.bayes.sd

landmarking.worst.node.mean

model.based.nodes.per.level.sd

model.based.shape.mean

statistical.iqr.sd

statistical.trim.mean.mean

Table 4.2: The MFs which are correlated with the AUC-ROC metric.

As it is shown in the previous tables of 4.1 and 4.2 , there is no common MF for

AUC-ROC and accuracy performance metrics.

45

CHAPTER 4. RESULTS

The result of the Cohen’s kappa metric is in the following table:

MF Name:

discriminant.cancor

infotheo.class.concentration.mean

infotheo.class.concentration.sd

landmarking.elite.nearest.neighbor.sd

model.based.shape.sd

statistical.correlation.sd

statistical.normality.sd

statistical.outliers.sd

Table 4.3: The MFs which are correlated with the Cohen’s kappa metric.

The result according to F-measure performance metric is as follows:

MF Name:

statistical.outliers.mean

Table 4.4: The MFs which are correlated with the F-measure metric.

The resulting MFs of the genetic algorithm according to the Matthews correlation

coefficient are as follows:

MF Name:

discriminant.min.eighenvalue

model.based.variable.importance.sd

statistical.iqr.sd

Table 4.5: The meta-features which are correlated with the Matthews correlation coefficient
metric.

The resulting MFs of the genetic algorithm according to precision are as follows:

MF Name:

46

CHAPTER 4. RESULTS

infotheo.attributes.concentration.mean

statistical.normality.sd

Table 4.6: The MFs which are correlated with the precision performance metric.

The resulting MFs of the genetic algorithm according with recall are as follows:

MF Name:

discriminant.cancor

infotheo.attributes.concentration.mean

infotheo.attributes.concentration.sd

infotheo.joint.entropy.mean

landmarking.elite.nearest.neighbor.sd

landmarking.linear.discriminant.sd

landmarking.worst.node.sd

statistical.outliers.sd

Table 4.7: The MFs which are correlated with the recall performance metric.

The resulting MFs of the genetic algorithm according to the balance accuracy coefficient

are as follows:

Meta-feature Name:

discriminant.min.eighenvalue

Table 4.8: The MFs which are correlated with the balance accuracy metric

From the previous results, we found that some MFs are common in correlation with

different performance metrics as follows:

MF Name: Performance metric Name

discriminant.cancor Cohen’s kappa, recall

landmarking.elite.nearest.neighbor.sd Cohen’s kappa, recall

statistical.outliers.sd Cohen’s kappa, recall

infotheo.attributes.concentration.mean recall, precision

47

CHAPTER 4. RESULTS

statistical.iqr.sd AUC-ROC, Matthews correlation coefficient

statistical.normality.sd Cohen’s kappa, precision

discriminant.min.eighenvalue balance accuracy, Matthews correlation coefficient

Table 4.9: The common MFs that are correlated with different performance metrics

From the results, it is clear that only a few MFs are correlated with more than one per-

formance metric. The only meta-features which are correlated with the same combination

of the performance metrics [Cohen’s kappa, recall] are:

• discriminant.cancor

• landmarking.elite.nearest.neighbor.sd

• statistical.outliers.sd

The other resulting MFs which are correlated with different combinations of performance

metrics are:

• infotheo.attributes.concentration.mean

• statistical.iqr.sd

• statistical.normality.sd

• discriminant.min.eighenvalue

48

CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

The objective of this study is to investigate the importance of MFs for classification

tasks in meta-learning. We conducted experiments using state of the art machine learning

models. Furthermore, we tried to take care of the imbalance issue in our dataset. The

datasets were preprocessed in a way that categorical attribute were converted to numerical

attributes. Until the time of writing this thesis, this experiment has only been done for

the logistic regression algorithm. The process for other machine learning algorithms is still

running on the Linux server which is provided by ELTE university.

In this experiment, we extracted the metafeatures using mfe package in R and we

neglected the ones that have the same value in which we are not interested. After that,

we applied the genetic algorithm for finding the best combinations of the MFs because we

can’t try with all combinations as we have 88 MFs(28 = 256). The last step of our work

is to find the frequent MFs which are correlated with different performance metrics. We

found that some MFs are common in correlation with some performance metrics.

5.1 Future work

Our work is only finished for the logistic regression algorithm and the other machine

learning algorithms are still running on the server which means that this experiment is

in progress. Thus, we are going to finish it and try to add the neural networks algorithm

to this experiment. Furthermore, This project can be extended by solving the problem of

the imbalance datasets which we have. In addition to that, we plan to run the genetic

49

CHAPTER 5. CONCLUSION

algorithm with different values of different parameters and discover the patterns of the

resulting MFs.

50

BIBLIOGRAPHY

Bibliography

[Alp10] Ethem Alpaydin. Introduction to Machine Learning. Massachusetts Institute

of Technology, second edition edition, 2010.

[BB10] Christoph Bernau and Anne-Laure Boulesteix. Variable Selection and Param-

eter Tuning in High-Dimensional Prediction . Technical Report Number 076,

2009, 2010.

[BHK15] Frank Emmert-Streib Benjamin Haibe-Kains. Quantitative Assessment and

Validation of Network Inference Methods in Bioinformatics. Frontiers in Ge-

netics, 2015.

[BL14] K. Bache and M. Lichman. UCI machine learning repository. http://archive.

ics.uci.edu/ml, 2014.

[BPGC00] H. Bensusan B. Pfahringer and C. Giraud-Carrier. Meta-learning by Landmark-

ing Various Learning Algorithms.. Proceedings of the Seventeenth International

Conference on Machine Learning, pages 743–750, 2000.

[BPR09] Soares C Brazdil P, Giraud-Carrier C and Vilalta R. Metalearning: Applications

to Data Mining, 1st edition. Springer-Verlag, Berlin Heidelberg, 2009.

[BS09] Gustavo E.A.P.A. Batista and Diego Furtado Silva. How k-Nearest Neighbor

Parameters Affect its Performance. Simposio Argentino de Inteligencia Artifi-

cial, pages 95–106, 2009.

[CH15] Tianqi Chen and Tong He. Higgs boson discovery with boosted trees. JMLR:

Workshop and Conference Proceedings, 2015.

51

BIBLIOGRAPHY

[DAG15] J. A. Fischer R. J. Foley R. R. Gupta R. Kessler A. G. Kim R. C. Nichol P.

Nugent A. Papadopoulos M. Sako M. Smith M. Sullivan R. C. Thomas W.

Wester R. C. Wolf F. B. Abdalla M. Banerji A. Benoit-Lévy E. Bertin D.

Brooks A. Carnero Rosell F. J. Castander L. N. da Costa R. Covarrubias D. L.

DePoy S. Desai H. T. Diehl P. Doel T. F. Eifler A. Fausti Neto D. A. Finley B.

Flaugher P. Fosalba J. Frieman D. Gerdes D. Gruen R. A. Gruendl D. James

K. Kuehn N. Kuropatkin O. Lahav T. S. Li M. A. G. Maia M. Makler M.

March J. L. Marshall P. Martini K. W. Merritt R. Miquel B. Nord R. Ogando

A. A. Plazas A. K. Romer A. Roodman E. Sanchez V. Scarpine M. Schubnell

I. Sevilla-Noarbe R. C. Smith M. Soares-Santos F. Sobreira E. Suchyta M. E.

C. Swanson G. Tarle J. Thaler A. R. Walker D. A. Goldstein, C. B. D’Andrea.

Automated transient identification in the dark energy survey. The Astronomical

Journal, 150(3), 2015.

[DF13] Ali Jannesari Felix Wolf Daniel Fried, Zhen Li. Predicting Parallelization of

Sequential Programs Using Supervised Learning. Machine Learning and Appli-

cations (ICMLA), 2013 12th International Conference, 2013.

[EOY17] Young Cheol Yoon Dong Wook Kim Sunyoung Kwon Eunsun Oh, Sung

Wook Seo and Sungroh Yoon. Prediction of pathologic femoral fractures in

patients with lung cancer using machine learning algorithms: Comparison of

computed tomographybased radiological features with clinical features versus

without clinical features. Journal of Orthopaedic Surgery, 25(2):1–7, 2017.

[Est17] Estimation lemma. Bootstrap aggregating — Wikipedia, the free encyclopedia,

2017. [Online; accessed 12-September-2017].

[FDG+12] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy.

Journal of Machine Learning Research, 13:2171–2175, jul 2012.

[FE17] Nicolo Fusi and Huseyn Melih Elibol. Probabilistic Matrix Factorization for

Automated Machine Learning. Cornell university library, 2017.

52

BIBLIOGRAPHY

[FP01] J. F¨urnkranz and J. Petrak. An evaluation of landmarking variants. Proceed-

ings of the ECML/PKDD Workshop on Integrating Aspects of Data Mining,

Decision Support and Meta-Learning, page 57–68, 2001.

[HBK00] Christophe Giraud-Carrier Hilan Bensusan and Claire Kennedy. A higher-order

approach to meta-learning. In Proceedings of the ECML’2000 workshop on

Meta-Learning: Building Automatic Advice Strategies for Model Selection and

Method Combination, page 109–117, 2000.

[HLL13] Zhihao Yang Hongfei Lin, Kavishwar B Wagholikar and Hongfang Liu. Identi-

fying protein complexes with fuzzy machine learning model. Proteome Science,

2013.

[ISW16] Adam Prugel-Bennettand Iwan Syarif and Gary Wills. SVM Parameter Op-

timization using Grid Search and Genetic Algorithm to Improve Classifica-

tion Performance. TELKOMNIKA (Telecommunication, Computing, Electron-

ics and Control), 14(4):1502–1509, 2016.

[JZ16] Matjaž Gams Jernej Zupančič, Damjan Kužnar. Model selection on the jsi

grid: Metis use-case. Slovenian Conference on Artificial Intelligence, pages 44–

47, 2016.

[LKRK13] A. Lipponen, V. Kolehmainen, S. Romakkaniemi, and H. Kokkola. Correction of

approximation errors with random forests applied to modelling of cloud droplet

formation. Geoscientific Model Development, 6(6):2087–2098, 2013.

[LMK11] Ping Li, Joshua L. Moore, and Arnd Christian König. b-bit minwise hashing

for large-scale linear SVM. CoRR, abs/1105.4385, 2011.

[MA15] Milad Malekipirbazari and Vural Aksakalli. Risk Assessment in Social Lending

via Random Forests. Expert Systems with Applications, 42(10):4621–4631, 2015.

[MSK05] Pang-Ning Tan Michael Steinbach and Vipin Kumar. Introduction To Data

Mining. 2005.

53

BIBLIOGRAPHY

[PBGS16] John G. Baker Philip B. Graff, Amy Y. Lien and Takanori Sakamoto. Modeling

the SWIFT Bat trigger algorithm with machine learning. The Astrophysical

Journal, 818(1), 2016.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[Ras17] Sebastian Raschka. Python Machine Learning. Packt Publishing Ltd, UK,

second edition edition, 2017.

[RB17] Jan Kanty Milczek Michał Tadeusiak Robert Bogucki, Jan Lasek. Early warning

system for seismic events in coal mines using machine learning. Proceedings

of the Federated Conference on Computer Science and Information Systems,

8:213–220, 2017.

[Say11] Saed Sayad. An Introduction to Data Mining. University of Toronto, Canada,

2011.

[SGH15] Julián Luengo Salvador García and Francisco Herrera. Data Preprocessing in

Data Mining. Springer, Switzerland, 2015.

[SS07] S. N. Deepa S.N. Sivanandam. Introduction to Genetic Algorithms. Springer

Publishing Company, 2007.

[SW10] Claude Sammut and Geoffrey I. Webb, editors. Decision Stump, pages 262–263.

Springer US, Boston, MA, 2010.

[SW17] Ali Akbar Septiandri and Okiriza Wibisono. Detecting spam comments on

Indonesia’s Instagram posts. Journal of Physics, 801(1):1742–6596, 2017.

[ZX17] Kun Fu and Fan Wu Zhibin Xiao, Yang Wang. Identifying Different Trans-

portation Modes from Trajectory Data Using Tree-Based Ensemble Classifiers.

ISPRS International Journal of Geo Information, 6(2):57, 2017.

54

