
Eötvös Loránd University
Faculty of Informatics

Enhancing the usability of Automatic
Essay Evaluation

Tashu,Tsegaye Misikir Mariya Saprikina
Data Science and Engineering Depart-

ment

Computer Science

December 2019, Budapest

CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis outline . 2

2 Theoretical review 3

2.1 Data preprocessing . 3
2.1.1 Tokenization . 3
2.1.2 Stemming and lemmatization 4

2.2 Feature Extraction - Bag-of-words model 5
2.3 Term Frequency-Inverse Document Frequency (TF-IDF) 6

2.3.1 Term Frequency (TF) . 6
2.3.2 Inverse document-frequency (IDF) 7
2.3.3 TF-IDF . 8
2.3.4 Limitations of TF-IDF approach 8

2.4 Distributional semantics . 8
2.4.1 Classic Word Embedding Model 9
2.4.2 C&W neural language model 11
2.4.3 Word2Vec . 12
2.4.4 Doc2Vec . 14

2.5 Models . 16
2.5.1 Latent Dirichlet Allocation (LDA) 16
2.5.2 Latent Semantic Analysis (LSA) 18
2.5.3 Word Mover’s Distance (WMD) 22
2.5.4 Clustering - K-means algorithm 24

i

CONTENTS

3 Experiments 27

3.1 Datasets . 27
3.1.1 Kaggle dataset . 28
3.1.2 Clough & Stevenson dataset 28

3.2 Similarity metrics . 30
3.2.1 Cosine similarity . 31
3.2.2 Earth Mover’s Distance . 32

3.3 Performance Measures . 33
3.4 Implementation details . 36

3.4.1 Packages used . 36
3.5 Off-topic essays detection . 38

3.5.1 Results and discussion . 40
3.6 Plagiarism detection . 42

3.6.1 Results and Discussion . 43
3.7 Score propagation . 47

3.7.1 Results and discussion . 48

4 Conclusion and Future Work 51

ii

LIST OF FIGURES

List of Figures

2.1 Example of tokenization . 4
2.2 Example of stemming . 5
2.3 Example of lemmatization . 5
2.4 Term-document matrix . 6
2.5 Example of Bag-of-Words . 6
2.6 Neural language model [5] . 10
2.7 A C&W neural language model [13] 12
2.8 CBOW model [29] . 13
2.9 Skip-gram model [29] . 14
2.10 PV-DM framework. [24] . 15
2.11 DBOW framework. [24] . 16
2.12 Topic modeling framework. [3] . 17
2.13 Graphical model representation of LDA. [9] 18
2.14 Mathematical representation of the matrix Ak. [6] 21
2.15 An illustration of Word Mover’s Distance. [22] 23
2.16 WMD computation results. [22] . 24
2.17 An example of clustering. 24
2.18 An illustration of four iterations of K-means. [31] 26

3.1 An example of light and heavily revised answers to the task A. [12] . 31
3.2 An illustration of Cosine similarity 32
3.3 Confusion matrix . 34
3.4 Accuracy . 35
3.5 Precision . 35
3.6 Recall . 36
3.7 Topic words extracted from the best-scored essays 39

iii

LIST OF FIGURES

3.8 Confusion matrix of the LDA+LSA results 41
3.9 Confusion matrix of the LDA+WMD results 42
3.10 Confusion matrix of the WMD results 44
3.11 Confusion matrix of the LSA results 45
3.12 Confusion matrix of the Tf-idf+Cosine results 46
3.13 Confusion matrix of the Doc2Vec results 48
3.14 Confusion matrix of the Word2Vec Mean results 49
3.15 Confusion matrix of the LSA results 49

iv

LIST OF TABLES

List of Tables

3.1 Statistics of the Kaggle dataset [38] 29
3.2 Number of answers by learning task and plagiarism category [12] . . . 30
3.3 Our Datasets. 39
3.4 Performance statistics of the first case. 40
3.5 Performance statistics of the second case. 41
3.6 Accuracy Performance of the implemented approaches 43
3.7 Accuracy performance of the implemented approaches 48

v

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

Automatic Essay Evaluation (AEE) systems were introduced to alleviate the work-
load of the assessors and to improve the feedback cycle in the teaching-learning pro-
cess in the context of large-scale assessment. Since its introduction, several research
activities have been carried out and Many analytical researches have introduced rel-
atively high correlation between human scores and the scores produced by AEE. The
task of AEE was regarded as a machine learning problem that learns to approximate
the assessment process using handcrafted features with supervised machine learning
approaches. Most of the state-of-the-art AEE systems rely on supervised machine
learning approaches that require a large number of manually annotated training sets
to train the scoring engine and make the scoring engine work well. There are cases
in which it is difficult to find labeled training short answers that require a great deal
of effort when creating labeled sets.

Every essay input has to pass through a proper validation mechanism before
computing the score to increase the use-ability of AEE systems. Every well-written
essay that does not address the question topic may receive a good score from an
AEE system because of linguistic features, such as text structure and surface [42].
If every essay submitted to the AEE system is evaluated as a standard essay input,
this may degrade user confidence in the AEE engine. Such essay might be either
off-topic or might be plagiarized.

The main objective of our research is to increase the use-ability of automatic

1

CHAPTER 1. INTRODUCTION

essay evaluation system by addressing the issues described above. Therefore, the
main objective of our research are the following:

1. To design an approach Off-topic essay detection for identification of student
essay which is not written to the test question topic.

2. To design an approach that can be used to detect copied student solutions and
train the model to distinct various levels of plagiarism.

3. To introduce an efficient approach for selecting small-sized set to be annotated
by human rater automatically that will be used to score the majority of essay
using semantic k-means.

1.2 Thesis outline

The structure of the thesis is described as follows:

• Chapter 2 provides a theoretical overview about the input representation
techniques and the models we implemented in the research.

• Chapter 3 provides a detailed explanation about the datasets and develop-
ment tools required for the experiments, and also a thorough review of the
results that were obtained during the implementations.

• Chapter 4 represents a conclusion of the work and outlines future research
activities.

2

CHAPTER 2. THEORETICAL REVIEW

Chapter 2

Theoretical review

2.1 Data preprocessing

The first step that needs to be done in any of machine learning tasks is data prepro-
cessing. The problem is that machines are not able to extract meaningful information
from raw and unstructured data. Here come some natural language processing (NLP)
techniques that deal with such kind of data and converts raw texts into cleaned to-
kens that can be readable by machine learning algorithms and be used for different
semantic analysis methods.

2.1.1 Tokenization

Tokenization is a process of breaking strings into tokens. These tokens can be repre-
sented as words, sentences, characters or punctuation symbols. It is a very important
step in natural language processing and should be done before any other preprocess-
ing step.

When tokenizing the document, it is important to be aware that not every token
is valuable. Some web links, email addresses and other unwanted characters may ap-
pear. There are some techniques in natural language processing that help to remove
this kind of tokens. In our text preprocessing, we used the following techniques:

1. Punctuation removal - removes all unnecessary punctuation marks.

2. Stopwords removal - removes the most common words in natural language.
There are 179 English words in nltk library, including ‘i’, ‘me’, ‘my’, ‘myself’,

3

CHAPTER 2. THEORETICAL REVIEW

‘we’, ‘you’, ‘he’, ‘his’ and etc. All of them have no contribution to deriving
semantics from texts. However, if a corpus is small, the removing stopwords
would decrease the total number of words by a large percent.

Figure 2.1: Example of tokenization

2.1.2 Stemming and lemmatization

In human language, some words may have different forms which are derived from
the same root but have a similar meaning. For example, "work" and "worked" mean
the same thing. However, in natural language processing, these two words will be
recognized as words with totally different meanings. Methods like Stemming and
Lemmatization were suggested and used to address the problems stated.

These methods are widely used in Search Engine Optimizations (SEOs), tag-
ging systems, indexing and information retrieval. For instance, when searching for
"friend" on Google, it will result in "friends", "friendship" because "friend" is the
root for each of them.

Stemming is a process of mapping a group of words to the same stem even if the
stem does not exist in natural language. So stemming may produce the words that
are not used by humans in that particular form.

4

CHAPTER 2. THEORETICAL REVIEW

Figure 2.2: Example of stemming

Lemmatization method is very similar to stemming. The difference is that unlike
stemming, it cuts the word ensuring that the root belongs to the human language.
In lemmatization, the root word is called Lemma. A lemma is a dictionary form of
a set of words.

Figure 2.3: Example of lemmatization

2.2 Feature Extraction - Bag-of-words model

As it has already been mentioned above, machine learning algorithms are not able
to work with raw texts; hence, the text documents have to be converted into vectors
of numbers. This concept is called feature extraction. One of the popular methods
of this concept is the bag-of-words (BoW) model. The earliest reference to "bag
of words" can be found in [17]. The model represents a text as the occurrences
or frequency of terms (words) in each document. Each document will be described
as a vector of real numbers where each number corresponds to the frequency of a
particular term in the dictionary. Let’s suppose we have a corpus D = {d1, d2, ..., dn}
and the dictionary T = {t1, t2, ..., tm}. Then the output of representation will be an

5

CHAPTER 2. THEORETICAL REVIEW

Rn×m matrix called the document matrix.



document1 document2 . . . documentn

term1 w(t1, d1) w(t2, d2) . . . w(t1, dn)

term2 w(t2, d1) w(t2, d2) . . . w(t2, dn)
...

...
...

termm w(tm, d1) w(tm, d2) . . . w(tm, dn)


Figure 2.4: Term-document matrix

Figure 2.5: Example of Bag-of-Words

2.3 Term Frequency-Inverse Document Frequency

(TF-IDF)

2.3.1 Term Frequency (TF)

Assume we have a corpus of English documents and would like to fetch the most
relevant ones to the query "the white dog". The simplest way is to filter out the
documents which do not contain such words at all. Nevertheless, that is not enough
because there will also be chosen the documents where their words might occur just
once. Therefore, we might consider that the more times the word appears in the
document, the more relevant it is for the given query. This approach is called term
frequency. However, if the corpus contains the documents with different lengths, we
might need to adjust the frequency following the length of each document.
The weight of a term that occurs in a document is simply proportional to the term
frequency[27]. Here comes the concept of term weighting.

6

CHAPTER 2. THEORETICAL REVIEW

Let tft,d be the frequency of a term t in a document d.
There are several possible representations of term weighting:

• Boolean frequency: tft,d = 1 if t occurs in d and 0 otherwise.

w(t, d) =

0, t 6∈ d

1, t ∈ d
(2.1)

It is important to note, that in this method the magnitude of each term to the
document will be completely lost, as we ignore the number of times each term
appears in the document.

• Term frequency adjusted for document length:

w(t, d) =
tft,d∑

t′∈d
tft′,d

, (2.2)

where
∑

t′∈d tft′,d is the number of terms in d

• Logarithmically scaled frequency: soothes the effect of very frequent terms
in a document.

w(t, d) = 1 + log tft,d (2.3)

2.3.2 Inverse document-frequency (IDF)

The problem with the previous example is that the word "the" is very common for
most of the documents, hence, besides the documents containing words "white" and
"dog", we will get all the documents containing the word "the" as well, which will
significantly lower the accuracy of the document relevance to the given query. As a
solution, a inverse document frequency concept was introduced [21] which emphasise
the significance of rare words in corpora and, on the contrary, ignores very frequent
words.

Considering dft as the document frequency of term t in the entire corpus, the
inverse document frequency is:

idft = log
N

dft
, (2.4)

7

CHAPTER 2. THEORETICAL REVIEW

where N is the total number of documents in the corpus N = |D|.

We can also modify the idf by adding a parameter α which soothe the impact of
very uncommon words.

idft = log
α +N

α + dft
(2.5)

2.3.3 TF-IDF

Summarizing the concepts discussed above, we can now calculate the tf-idf using
the combination of term frequency and the inverse document frequency. [36]

tfidfd,t = tfd,t × idft (2.6)

There are many options for measuring tf-idf, and some of them might give quite
good results depending on the given corpora, as shown in [35]. For instance, cal-
culating tf-idf using a logarithmically scaled term frequency (Formula 2.3) will sig-
nificantly lower the weight given to common terms. It could be useful when term
frequencies follow a power law with respect to the rank.

2.3.4 Limitations of TF-IDF approach

TF-IDF is based on Bag-of-Words model; therefore, it ignores such properties as
the position of terms in documents. For example, "This is a bicycle, not a car" and
"This is a car, not a bicycle" will have the identical vector representation, although
the meaning is totally different. This approach also does not capture the semantic
similarity between documents compared to word embedding, topic modelling and
others will be covered later. Considering all these limitations, TF-IDF can only be
useful as a lexical level concept.

2.4 Distributional semantics

As was already mentioned above, previous models of term vector representations
have nothing to do with the semantic similarity between linguistic items of language
data. Consider the following two sentences: "The weather is good" and "The weather

8

CHAPTER 2. THEORETICAL REVIEW

is great". They are linguistically very similar to each other. Let us try to analyse word
vector representation of similar words "good" and "great" based on the existence
of the word in the vocabulary. The vocabulary is [The,weather,is,good,great]. The
one-hot encoded vectors will be represented as:

Good: [0,0,0,1,0];
Great: [0,0,0,0,1].
As these two vectors are orthogonal, the cosine similarity between them will be

very low, although they have a similar meaning.
Another problem is that if we have a large corpus of, for example, millions of

words, all the word vectors will be very sparse and, hence, not efficient. The tf-idf
approach helps to reduce the dimensionality of vectors, yet it is not sufficient.

Distributional semantics is the research area which is focused on solving the
above-mentioned problems, precisely, quantifying semantic similarities between words
based on their distributional vector representations in large samples of language
data.

The idea of a distributed representation of words has its roots in [15] as a word is
characterized by the company it keeps which means that the words which are usually
used in the same contexts tend to have similar meanings. Over the years, there was
a significant contribution to the research about word embedding and dimensionality
reduction of word vectors in [5, 13, 23, 33].

2.4.1 Classic Word Embedding Model

The term word embedding was originally mentioned by [5] in 2003 who trained the
embeddings in a neural language model together with the model’s parameters.

9

CHAPTER 2. THEORETICAL REVIEW

Figure 2.6: Neural language model [5]

The model shown in Figure 2.6 represents a neural architecture f(i, wt−1, . . . , wt−n+1) =

g(i, C(wt−1), . . . , C(wt−n+1)) where g is the neural network and C(i) is the i-th word
feature vector. This model consists of one-hidden layer feed-forward neural network
that is trained to predict the next word in the context. It takes a word from a vo-
cabulary as input and embeds it as a vector into a lower-dimensional space, which
it then fine-tunes through back-propagation, necessarily yields word embeddings as
the weights of the first layer, which is usually referred to as Embedding Layer.

Let us assume we have a training corpus T with the sequence of words in it
w1, w2, w3, ..., wT that are taken from vocabulary V with a size of |V . The neural
network model consists of n words. We associate every word with an input embedding
vw (the eponymous word embedding in the Embedding Layer) with d dimensions
and an output embedding v′w. We finally optimize an objective function Jθ with
regard to our model parameters θ and our model outputs some score fθ(x) for every
input x.

Jθ =
1

T

T∑
t=1

log f(wt, wt−1, ..., wt−n+1) (2.7)

10

CHAPTER 2. THEORETICAL REVIEW

f(wt, wt−1, ..., wt−n+1) is the output of the model, i.e the probability
p(wt|wt−1, ..., wt−n+1) as computed by the softmax, where n is the number of

previous words fed into the model.
There are 3 layers used in the above neural language model:

1. Embedding Layer: This layer generates word embeddings by multiplying an
index vector with a word embedding matrix;

2. Intermediate Layer(s): One or more layers that produce an intermediate repre-
sentation of the input, e.g. a fully-connected layer that applies a non-linearity
to the concatenation of word embeddings of n previous words;

3. Softmax Layer: The final layer that produces a probability distribution over
words in V .

2.4.2 C&W neural language model

Later in 2008, an improved neural language model was trained on a larger dataset,
and the computed word embeddings were introduced as a highly effective tool when
used in downstream tasks. [13]

In order to avoid computing the expensive softmax, they came up with employing
an alternative objective function: rather than the cross-entropy criterion of [5], which
maximizes the probability of the next word given the previous words, [13] train a
network to output a higher score fθ for a correct word sequence (a probable word
sequence in [5]) than for an incorrect one. For this purpose, they use a pairwise
ranking criterion, which is the following:

Jθ =
∑
x∈X

∑
w∈V

max{0, 1− fθ(x) + fθ(x
(w))} (2.8)

They sample correct windows x containing n words from the set of all possible
windows X in their corpus. For each window x, they then produce a corrupted,
incorrect version x(w) by replacing x’s centre word with another word w from V .
Their objective now maximises the distance between the scores output by the model
for the correct and the incorrect window with a margin of 1.

11

CHAPTER 2. THEORETICAL REVIEW

Figure 2.7: A C&W neural language model [13]

2.4.3 Word2Vec

However, the most effective way of training word embeddings was introduced by [29]
in 2013. They created a word embedding toolkit called word2vec which can train
vector space models much faster than it previously was.

Tomas Mikolov [29] introduced two architectures to learn word embeddings (Con-
tinuous bag-of-words and Skip-gram) which turned out to be a way less computa-
tionally expensive compared to the previous neural language models.

• Continuous bag-of-words (CBOW)

In contrast to the neural language model that is only able to make predictions
on past words [5, 13], this approach uses both n words before and after the
target word wt for this purpose (Figure 2.8). The model is called continuous

12

CHAPTER 2. THEORETICAL REVIEW

bag-of-words to underline that the order of words is not preserved as well as
in the classic bag-of-words method.

Figure 2.8: CBOW model [29]

The math representation of the above scheme is the following:

Jθ =
1

T

T∑
t=1

log p(wt, wt−1, wt+1, ..., wt+n) (2.9)

This model receives a window of n context words around a target word wt at
each time step t instead of feeding n past words into the model.

• Skip-gram

Unlike CBOW model which predicts the target word using the context words,
Skip-gram uses the target word as an input to predict the context words the
target word is surrounded by (Figure 2.9).

As shown in the Formula 2.10, skip-gram sums the log probabilities of n context
words to the left and right of the target word wt:

13

CHAPTER 2. THEORETICAL REVIEW

Figure 2.9: Skip-gram model [29]

Jθ =
1

T

T∑
t=1

∑
−n≤j≤n,6=0

log p(wt+j|wt) (2.10)

Once the word2vec model training converges, we result with the distributed
word embeddings which have a very high correlation with semantic regularities
in human language. For example, "King - Man + Woman" will result in a
vector which is very closed to the vector of a word "Queen" [30].

2.4.4 Doc2Vec

In our experiments, we are dealing with sets of documents; hence, we were looking
for document vector representation techniques which perform in the most effective
way. In this chapter, we have already covered a classic Bag-of-Words model and TF-
IDF. However, both techniques are not always useful due to such limitations as not
preserving the word order in the context and not capturing the semantic similarity

14

CHAPTER 2. THEORETICAL REVIEW

between words and their corresponding contexts.
One of the most recent and popular is Doc2Vec. This model is an actual extension

of a previously discussed framework called Word2Vec. The goal of Doc2Vec is to
determine a continuous paragraph or a document vector in order to preserve the
semantic similarity among a set of documents [24].

• Paragraph vector: A distributed memory model. (PV-DM)

Figure 2.10: PV-DM framework. [24]

This model is very similar to the CBOW Word2Vec model. The only extension
that was made is adding the Paragraph Vector. Each paragraph in a document
is mapped to a unique vector represented by a column in matrix D. Each word
in its turn is also mapped to a unique vector represented by a column in matrix
W . The paragraph vector and word vectors are concatenated to predict the
next word given the context. In other words, the paragraph vector plays the
role of memory, remembering what was missing from the given context.

This method addresses two main limitations of a classic Bag-of-Words model.
Firstly, it captures the semantic relationship between the words. Secondly,
the word order is now taken into consideration. It helps to preserve much
information, at least in a small context. This is a way like an n-gram model
works. However, unlike paragraph vector model, the n-grams would create a
very high-dimensional vector representation which is not efficient in case of
having large corpus.

• Paragraph Vector without word ordering: Distributed bag of words

(DBOW)

15

CHAPTER 2. THEORETICAL REVIEW

Figure 2.11: DBOW framework. [24]

As opposed to PV-DM method, the Paragraph vector in this method is trained
to predict a small context of words which is quite similar to Skip-gramWord2Vec
model. If the above Paragraph method predicts the next word in the context,
this method ignores the context words in the input but makes the model
predict the words randomly chosen from the paragraph in the output. This
method also does not preserve the order of the context words and the model
requires to store fewer data compared to the previous Paragraph method.

2.5 Models

This section describes the models we implemented to deal with three main problems
of Automatic Essay Evaluation. In our methods, we used the following models:
Latent Dirichlet Allocation (LDA), Latent Semantic Analysis (LSA), Word Mover’s
Distance (WMD) and K-means clustering.

2.5.1 Latent Dirichlet Allocation (LDA)

One of the primary goals in natural language processing is to analyse texts by its
topics. The process of extracting such topics from a collection of documents is called
topic modeling. A topic can be described as a set of words that usually occur in
similar contexts. Hence, the main objective of topic modelling is to discover hidden
or latent structure from a collection of documents that share the same content.

Latent Dirichlet Allocation is one of the most popular techniques in topic mod-

16

CHAPTER 2. THEORETICAL REVIEW

Figure 2.12: Topic modeling framework. [3]

eling. It treats the documents as a mixture of topics; these topics further generate
words based of their probability distribution [9].

In LDA, we assume that there are k underlying latent topics according to which
documents are generated, and that each topic is represented as a multinomial distri-
bution over the |V | words in the vocabulary. A document is generated by sampling
a mixture of these topics and then sampling words from that mixture [8].

In LDA the terms are defined as:

• A word is a unit-basis vector fetched from a vocabulary {1, . . . , V }

• A document is a sequence of N words denoted by W = {w1, w2, . . . , wN}

• A corpus is a collection of M documents denoted by D = {w1, w2, . . . , wM}.

The LDA defines the following generative process for each document W in a
corpus D:

1. Choose N ∼ Poisson(ξ), where N is the length of the document

2. Choose θ ∼Dir(α), where θi is the multinomial topic distribution for document
i (a k-vector lies in the (k − 1)− simplex if θi ≥ 0,

∑k
t=0 θi = 1) and α is a

k-vector (k denotes the number of topics) with components αk > 0. The
probability density function of the Dirichlet distribution is the following:

17

CHAPTER 2. THEORETICAL REVIEW

p(θ|α) =
Γ(
∑k

i=1 αi)

Πk
i=1Γ(αi)

θαi−1
1 · · · θαk−1

k (2.11)

3. For each of the N words wn:

• Choose a topic zn ∼ Multinomial(θ);

• Choose a word wn from a multinomial probability p(wn|zn, β) conditioned
on the topic zn. The word probabilities are set by a k×V matrix β where
βij = p(wj = 1|zi = 1);

• Note: each topic has a different probability of generating each word

Figure 2.13: Graphical model representation of LDA. [9]

In LDA we generate both word distribution for each topic βk and topic distri-
bution for each document θd using Dirichlet distributions. For instance, by learning
a k-vector αi, we learn the topics distribution the document may have. The higher
the αi value is relevant to others, the more likely we will pick that topic.
In a Dirichlet distribution, the probability distribution is a sampled value from p

which always sums up to one. This is a reason why Dirichlet distribution is called a
distribution of distributions.

2.5.2 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) is a technique in distributional semantics which
analyze relationships between a set of documents and the terms they contain by
producing a set of concepts related to the documents and terms. Similarly to LDA
model, the main idea of LSA is that words with a close meaning will occur in similar

18

CHAPTER 2. THEORETICAL REVIEW

contexts of documents. It extracts similarities between documents using dimension-
ality reduction. Firstly, a classic term-document matrix is constructed from a large
set of documents using Count Vectorizer (classic Bag-of-words) or Tf-Idf. Then, a
popular mathematical technique called singular value decomposition (SVD) is ap-
plied to this matrix to reduce the number of rows without distorting the similarity
structure among columns.

The latent semantic structure was originally introduced in [16] as a Latent Se-
mantic Indexing (LSI). Both LSI and LSA follow the same method of reducing
dimension, however, LSI is mostly used in the context of web search, while LSA
works with large texts in natural language processing. [4] introduced significant im-
provements in speech recognition tasks due to the power of LSA to capture long-term
context of text.

The basic algorithm of LSI/LSA techniques can be described as follows [10]:

1. A matrix A is formed, where in each row corresponds to a term that appears
in the documents, and each column corresponds to a document. Each element
am,n in the matrix corresponds to the number of times that the term m occurs
in document n.

2. Local and global term weighting is applied to the entries in the term-document
matrix. This weighting may be applied in order to achieve multiple objectives,
including compensating for differing lengths of documents and improving the
ability to distinguish among documents. Some very common words such as
and, the, etc. typically are deleted entirely (i.e., treated as stopwords).

3. Singular value decomposition (SVD) is used to reduce this matrix to a product
of three matrices:

A = UΣV T (2.12)

Where:

• A ∈ Rt×d - term-document matrix

• U ∈ Rt×t - term-term orthogonal matrix having the left singular vectors
of A as columns

19

CHAPTER 2. THEORETICAL REVIEW

• V ∈ Rd×d - document-document orthogonal matrix having the right sin-
gular values of A as columns

• Σ ∈ Rd×d - term-document diagonal matrix whose elements are the singu-
lar values of A (the non-negative square roots of the eigenvalues of AAT

)

4. Dimensionality is reduced by deleting all but the k largest values of Σ, together
with the corresponding columns in U and V , yielding an approximation of A:

Ak = UkΣkV
T
k (2.13)

which is the best rank-k approximation to A in a least-squares sense. The
result of rank lowering is that some dimensions were combined and terms with
similar meaning are now connected to each other:
{(car), (truck), (flower)} –> {(1.3452 * car + 0.2828 * truck), (flower)}.

5. This truncation process provides the basis for generating a k-dimensional vec-
tor space. Both terms and documents are represented by k-dimensional vectors
in this vector space.

6. New documents (e.g., queries) and new terms are represented in the space by
a process known as folding-in [16]. When adding a new document, it should
be firstly cleaned by the same pre-processing steps (e.g., stopword removal)
as those applied to the original documents used in creating the space. The
document then is assigned a representation vector that is the weighted average
of the representation vectors for the terms of which it is composed. A similar
process is applied to fold in new terms.

7. The similarity of any two objects represented in the space is reflected by the
proximity of their representation vectors, generally using a cosine measure.

20

CHAPTER 2. THEORETICAL REVIEW

Figure 2.14: Mathematical representation of the matrix Ak. [6]

The low-dimensional vector representation can be further applied to the following
challenges:

• Compare the documents in the low-dimensional space (data clustering, docu-
ment classification).

• Detect relationship between words (synonymy and polysemy)

• Detect similar documents through languages after analyzing a base set of trans-
lated documents (cross language retrieval)

• Analyze word relation in document corpus

21

CHAPTER 2. THEORETICAL REVIEW

2.5.3 Word Mover’s Distance (WMD)

Word Mover’s Distance was introduced in 2015 by [22] as a distance measurement
between two sentences or documents. Using pretrained word embeddings [29], it com-
putes the minimum distance which is needed to "transport" the word embeddings
from one document to another.

Let us assume we have pretrained word2vec vectors as a matrix X ∈ Rd×n for
a vocabulary of n words. xi ∈ Rd will be the representation of the ith word in a
d-dimensional space. Let the documents be represented as a standard Bag-of-words
(nBOW) vectors, d ∈ Rn (di = ci∑n

j=1 cj
, where ci is the number of times the word i

occurs in the document). Then, let d and d′ be the vectors of two semantically closed
documents: "Obama speaks to the media in Illinois" and "The President greets the
press in Chicago". We can assume that these two vectors lie in the n−1 dimensional
simplex of word distributions and see that the vectors will be placed far from each
other because of dissimilarity of the words between them.

The goal of WMD is to embed the semantic similarity between words such as
President and Obama into the document distance metric. It is naturally possible to
compute the dissimilarity between words using Euclidian distance in the word2vec
embedding space. In other words, the distance between words i and j will be c(i, j) =

||xi − xj|| which can be referred as cost for "traveling" from one word to another.
The WMD presents a "transport" matrix T ∈ Rn×n in the way that Tij defines

how much of word i in d need to be transported to a word j in d′. More precisely,
WMD trains T to minimize the cost of moving d to d′:

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

i,j=1

Tij = di ∀i ∈ {1, . . . , n}

n∑
i,j=1

Tij = d
′

j ∀j ∈ {1, . . . , n}

As a result, the documents that share the same or similar words will have smaller
distances than documents with uncommon words. In [22] WMD was denoted as
a special case of the Earth Mover’s Distance metric (EMD) [34] also known as
Wasserstein distance [25].

22

CHAPTER 2. THEORETICAL REVIEW

[14] introduced an alleviated version of the transport problem described above
by adding an entropy regularizer to the transport objective in order to soothe the
cubic time complexity of the Wasserstein distance computation. Given a transport
matrix T , let h(T) = −

∑n
i,j=1 Tij log(Tij) be the entropy of T . For any λ > 0, the

regularized (primal) transport problem is defined as [19]:

min
T≥0

n∑
i,j=1

Tijc(i, j)−
1

λ
h(T)

subject to:
n∑

i,j=1

Tij = di ∀i ∈ {1, . . . , n}

n∑
i,j=1

Tij = d
′

j ∀j ∈ {1, . . . , n}

However, this method does not consider the situation when the number of di-
mensions is too high. Hence, it will not be efficient for extremely large document
settings (all possible words). [22]

Figure 2.15: An illustration of Word Mover’s Distance. [22]

As shown in Figure 2.15, the words in bold are the embedded word2vec vectors.
Firstly, WMD will "transport" each item from document 1 to document 2, since the
algorithm is not aware about the linguistic similarity in language yet. Finally, it will
select the minimum transportation cost of each word.

The top of Figure 2.16 illustrates the members of the WMD metric between an
input sentence D0 and two sentences D1, D2. The arrows in the bottom describe a
flow between two words and are labeled with their distance contribution.

23

CHAPTER 2. THEORETICAL REVIEW

Figure 2.16: WMD computation results. [22]

2.5.4 Clustering - K-means algorithm

Clustering is a popular unsupervised technique of partitioning data points into dis-
joint subgroups or clusters. This is obtained in a way that the points within a cluster
are similar to each other and dissimilar to the points in other clusters. [28, 11]

Figure 2.17: An example of clustering.

All clustering methods can be divided into two types:

• Hard clustering - each data point can be the member of only one cluster.
Example models: K-means clustering, Hierarchical clustering

• Soft clustering - the probability is assigned for each data point to be in either

24

CHAPTER 2. THEORETICAL REVIEW

of the given number of clusters. Example models: Expectation-Maximization,
Latent Semantic Indexing

In this section we will cover the most widely used flat clustering technique,
namely, K-means clustering [20, 26]. Assuming we have a datasetD = {x1, x2, . . . , xN}
of N data points, let us define a K for clusters C = {C1, C2, . . . , Ck, . . . , CK} and
ck will be the centroid of cluster Ck:

ck =
1

|Ck|
∑
x∈Ck

x (2.14)

The main objective of K-means algorithm is to divide the data points into K-
number of clusters with minimum divergence among points in each cluster called
as NP-hard problem [1]. This goal is achieved by minimizing the score of Sum of
Squared Errors (SSE):

SSE(C) =
K∑
k=1

∑
xi∈Ck

||xi − ck||2 (2.15)

This function iteratively relocates the centroids and reassigns the data points for
clusters until the locally optimal partition set Ĉ is not reached:

Ĉ = arg min
C

SSE(C) (2.16)

K-means algorithm consists of the two following steps:

1. Initialization:
Set ck for K clusters to random values fetched from the dataset

2. Iteration (Lloyd’s algorithm)[26]:
Repeat until convergence criterion is met:

• Assignment step

Each data point is assigned to the nearest centroid:

P
(t)
k = {xi : ||xi − C(t)

k || ≤ ||xi − C
(t)
k∗ || ∀k

∗ = 1, . . . , K} (2.17)

• Update step

Calculate the mean of each cluster based on their members and update
the centroids:

25

CHAPTER 2. THEORETICAL REVIEW

C
(t+1)
k =

1

|P (t)
k |

∑
xi∈P

(t)
k

xi (2.18)

Figure 2.18: An illustration of four iterations of K-means. [31]

The minimizing of SSE proves the convergence of K-means, however, there is no
guarantee that a global minimum will be reached. This is a particular case when a
dataset contains extreme data points that deviate from other values (outliers) and,
hence, will not fit well in any cluster. As a result, we end up with a singleton cluster
which contains only one data point. In order to solve this, we will need to reinitialize
the centroids and repeat the steps again.

26

CHAPTER 3. EXPERIMENTS

Chapter 3

Experiments

In this chapter we will explain the data sets used to evaluate the performance of the
approaches, the similarity metrics which are used for computing the similarity after
the input representation, the proposed approaches used to address the issues intro-
duced in chapter 1 (off-topic detection, plagiarism detection and score propagation)
and the experimental results.

3.1 Datasets

One of the major requirements in any data science task is the presence of a rationally
chosen data. For our experiments we needed sets of real student essays written in
English and fairly scored by professors. After careful review we came up with two
datasets:

1. Essays Dataset used in the Automated Student Assessment Prize (ASAP) run
by Kaggle 1[2]

2. Corpus of Plagiarised Short Answers created by Paul Clough and Mark Steven-
son, University of Sheffield[12]

The dataset 1 will be used for off-topic detection and automatic essay scoring
models. The dataset 2 will be used for plagiarism detection model. Both datasets
will be discussed thoroughly in the subsections below.

1https://www.kaggle.com/c/asap-aes

27

CHAPTER 3. EXPERIMENTS

3.1.1 Kaggle dataset

This dataset provides 12976 essays differentiated by eight unique topics . The average
essay length ranges from 150 to 550 words per answer. The essays were written by
students ranging in grade levels from Grade 7 to Grade 10. All works were scored by
real teachers and were double-scored. Each of the eight essay sets has its own unique
properties and was constructed using a corresponding prompt, each with individual
marking criteria and score range.

The training set of all essays consists of the following columns:

• essay_id: A unique identifier for each individual student essay

• essay_set: 1-8, an id for each set of essays

• essay: The ascii text of a student’s response

• rater1_domain1: Rater 1’s domain 1 score; all essays have this

• rater2_domain1: Rater 2’s domain 1 score; all essays have this

• rater3_domain1: Rater 3’s domain 1 score; only some essays in set 8 have
this.

• domain1_score: Resolved score between the raters; all essays have this

• rater1_domain2: Rater 1’s domain 2 score; only essays in set 2 have this

• rater2_domain2: Rater 2’s domain 2 score; only essays in set 2 have this

• domain2_score: Resolved score between the raters; only essays in set 2 have
this

• rater1_trait1 score - rater3_trait6 score: trait scores for sets 7-8

3.1.2 Clough & Stevenson dataset

The corpus was developed with a purpose to address plagiarism as an increasing
problem for higher education institutions. It consists of short answers to Computer
Science prompts where plagiarism can be detected. The dataset is constructed in
the way of representing several stages of plagiarism.

28

CHAPTER 3. EXPERIMENTS

Prompt #Essays Avg length Scores

1 1,783 350 2-12
2 1,800 350 1-6
3 1,726 150 0-3
4 1,726 150 0-3
5 1,805 150 0-4
6 1,800 150 0-4
7 1,569 250 0-30
8 723 650 0-60

Table 3.1: Statistics of the Kaggle dataset [38]

This corpus can be successfully used in plagiarism detection systems for the rea-
son that it simulates typical cases of plagiarism practised by students as realistically
as possible. There is a set of five prompts (A-E) on five different topics that can be
possibly included in the Computer Science curriculum. For each of these prompt a
set of responses were provided using various simulating approaches. Based on these
approaches the one can denote whether the answer is plagiarised or not. To simulate
plagiarism authors used a set of texts from Wikipedia which participant will use as
a source to produce a plagiarised answer.

Four stages of plagiarism are described as follows:

• Near copy: Participants copied text from the corresponding Wikipedia article
(i.e. copy-paste). No guidance was provided about which parts of the article to
copy. As a result, short text with a length of 200-300 words had to be produced
by multiple selections from the article.

• Light revision: Participants based their responses on the texts fromWikipedia
article without instruction on which parts to select. However, they were asked
to do paraphrasing by using synonyms and changing grammatical structure in
some phrases. The order of copied information had to be preserved.

• Heavy revision: Participants based their responses on the corresponding
Wikipedia article but were asked to rephrase the entire text with synonyms
and change the structure. They were also allowed to partition a source sentence
or combine various source sentences all together in an arbitrary manner.

29

CHAPTER 3. EXPERIMENTS

• Non-plagiarism: Participants had to prepare for the questions with the help
of relevant learning materials. They further produced their unique answers
based on the information they had learned from the materials. They were also
allowed to look at some additional materials during the exam but were asked
to completely ignore the Wikipedia articles.

The authors invited 19 participants to take part in creating the corpus. All of
them were students in Computer Science Department of Sheffield University since
each participant had to have at least basic understanding of Computer Science. The
answers had to be in a range from 200 to 300 words containing only standard (ASCII)
characters. Each participant had to answer five questions with different approaches:
two of the five questions were answered without plagiarising (the "non-plagiarism"
category), one question using the near copy, one using light revision and one using
heavy revision.

Category
Learning task

Total
A B C D E

Near Copy 4 3 3 4 5 19
Light revision 3 3 4 5 3 19
Heavy revision 3 4 5 4 3 19
Non-plagiarised 9 9 7 6 7 38

Total 19 19 19 19 19 95

Table 3.2: Number of answers by learning task and plagiarism category [12]

The corpus consists 95 answers (Table 3.2) and five Wikipedia articles which is
100 documents in total. The values for the categories in the dataset are the following:
"cut" - near copy, "light" - light revision, "heavy" - heavy revision, "non" - non-
plagiarism.

3.2 Similarity metrics

This section will describe the similarity metrics we used in the experiments. In order
to find the similarity between two document vectors, we need a similarity measure

30

CHAPTER 3. EXPERIMENTS

Figure 3.1: An example of light and heavily revised answers to the task A. [12]

which will calculate the distance between them. The lower the distance, the higher
is the similarity.

3.2.1 Cosine similarity

Cosine similarity is one the most widely used approaches to compute the similarity
between documents. It uses the cosine of angle between two vectors particularly used
in positive space where the result is between 0 and 1.

In our experiments we used cosine similarity metric to calculate the distance
between the topic words extracted from LDA model and student essays which were
firstly converted to Tf-idf matrix and then fed into the LSA model. Given two LSA
vectors a and b, the cosine similarity is the following:

Cos(a, b) =
~a ·~b
‖~a‖‖~b‖

(3.1)

As shown in the Figure 3.2, the documents "Python is cool" and "I like football"
head up to the opposite directions, hence, the cosine angle between them will be large
and they are considered as dissimilar. It is also important to note that according to
the LSA vector representation, the document "Python is cool" will be very similar
to other documents written about machine learning as well as the document "I like
football" will be similar to the documents about sport. This can be explained by

31

CHAPTER 3. EXPERIMENTS

Figure 3.2: An illustration of Cosine similarity

the LSA power to combine different words occurring in the same contexts.

3.2.2 Earth Mover’s Distance

Earth Mover’s Distance metric is a default dissimilarity measure in Word Mover’s
Distance algorithm [40] (discussed in 2.5.3). It computes the dissimilarity between
two multi-dimensional distributions in some vector space (e.g. cloud of word embed-
dings) where the distance between points is measured by, so called, ground distance
(e.g. Euclidean distance).

The EMD can be considered as a solution to the well-known transportation prob-
lem. Based on our experiment in WMD model, we assumed the distributions as the
word distributions of documents, the weighted graph represents the similarity be-
tween two documents and the EMD is trained to calculate the minimum cumulative
cost to "transport" all words from one document to another.

Given two documents A and B let us define a weighted graph G as follows [44]:

• Let A = {(ta1, wa1), (ta2, wa2), . . . , (tam, wam)} be the representation of the
document A; tai is a unique word in the document A and wai is the word’s
weight over the term-document matrix.

32

CHAPTER 3. EXPERIMENTS

• Let B = {(tb1, wb1), (tb2, wb2), . . . , (tbn, wbn)} be the representation of the doc-
ument B; tbj is a unique word in the document B and wbj is the word’s weight
over the term-document matrix.

• Let D = {dij} be the distance matrix where dij is the semantic distance be-
tween words tai and tbj computed beforehand using Euclidean distance measure
on pretrained word2vec embeddings.

• Let G = {A,B,D} be the weighted graph produced by the combination of A,
B and D.

Based on the weighted graph G, we can define a flow F = {fij} where fij is the
flow between the words tai and tbj that minimizes the overall transportation cost:

WORK(A,B, F) =
m∑
i=1

n∑
j=1

fijdij (3.2)

After having the transportation problem solved and finding the optimal F , the
EMD can be defined as:

EMD(A,B) =

m∑
i=1

n∑
j=1

fijdij

m∑
i=1

n∑
j=1

fij

(3.3)

The last step is to compute the similarity between documents A and B:

SimEMD(A,B) = 1− EMD(A,B) (3.4)

The normalization of SimEMD(A,B) is in the range of [0,1] such that the higher
SimEMD(A,B) is, the more the documents A an B have in common.

3.3 Performance Measures

In order to analyse and evaluate the performance of machine learning algorithms, we
need some performance metrics. Our challenge is considered as classification prob-
lem, hence, we will be using such metrics as confusion matrix, accuracy, precision
and recall. Before diving into the description of each metric, let us define the basic
terminology of the evaluation techniques such as true positives,true negatives,false

33

CHAPTER 3. EXPERIMENTS

positives and false negatives. They demonstrate the correlation between the results
of the classifier and actual observations. The terms positive and negative refer to
the prediction made by the classifier, whereas true and false refer to whether that
prediction matches to the actual observation.

• True Positives (TP) - when both the actual and predicted values are
positive.

• True Negatives (TN) - when both the actual and predicted values are
negative.

• False Positives (FP) - when the actual value is negative and the predicted
value is positive.

• False Negative (FN) - when the actual value is positive and the predicted
value is negative.

1. Confusion matrix

Confusion matrix, also called as an error matrix [37], is a table layout that
visualise the performance of a machine learning algorithm. The actual class is
represented by rows and the predicted class performs as columns. Here is an
illustration of confusion matrix:

Figure 3.3: Confusion matrix

2. Accuracy
Accuracy computes the coefficient of match between the actual and predicted
classes [41]. It is a proportion of all the true results over the total number of
predictions.

34

CHAPTER 3. EXPERIMENTS

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

Figure 3.4: Accuracy

3. Precision
Precision describes how precise or accurate the model is by calculating the ratio
of True Positives over all the positive predictions [41]. The usage of Precision
metric is relevant when the cost of False Positives is high.

Precision =
TP

TP + FP
(3.6)

Figure 3.5: Precision

4. Recall

Recall is a metric which computes how many of the True Positives the model
managed to capture over the total number of actual positive observations. This
metric is quite useful to apply when there is a high cost of False Negatives.

35

CHAPTER 3. EXPERIMENTS

Recall =
TP

TP + FN
(3.7)

Figure 3.6: Recall

3.4 Implementation details

3.4.1 Packages used

This section will provide the detailed review about the main implementation tools we
used in our proposed models. The models and data preprocessing were run by Python
3.7.3. Over the recent years, Python has become one of the popular programming
languages and the top choice language for developers in machine learning, artificial
intelligence (AI) and deep learning projects. The main aspect that has made Python
such a well-known solution, is its variety of useful libraries and frameworks that helps
developers easily implement machine learning tasks and save time of coding. In our
implementations we used the popular packages provided by Python community such
as NumPy, SciPy, Pandas, Gensim 2, Scikit-learn 3 and NLTK 4.

NumPy is the most fundamental module provided for scientific computations in
Python. It consists of a variety of essential features for solving multidimensional

2https://radimrehurek.com/gensim/
3https://scikit-learn.org/stable/
4http://www.nltk.org

36

CHAPTER 3. EXPERIMENTS

array and matrix problems and also enables efficient implementation of mathemati-
cal computations in a high-level language. The package has been widely adopted in
academia, national laboratories, and industry, with applications ranging from gam-
ing to space exploration [43]. In our case the NumPy was used for representing the
actual and predicted data as arrays after fetching the results from model.

SciPy is a widely used library for ML projects which contains substantial mod-
ules for linear algebra, optimization, integration, statistics and image processing.
The functionality of SciPy library is based on NumPy such that its arrays make
extensive use of NumPy. Thus, the data structure of SciPy is a multidimensional
array provided by NumPy. In our LSA model we used a submodule of SciPy to
compute cosine similarity between documents in LSA matrix.

Pandas was designed as an exclusive solution to work with data in a simple and
intuitive way. It contains an abundance of functions used for data manipulation,
aggregation and visualization. Pandas library can directly operate on data fetched
from different data sources such as SQL databases, CSV, Excel. Pandas functions
play an essential role in all the text mining projects as it handles the crucial op-
erations of preprocessing task having the data ready for further implementations.
There are two main structures in Pandas: "Series" and "DataFrame". Series is a one
dimenstional labeled array like object, while DataFrame is a 2-dimensional labeled
data structure.

Gensim was primarily presented as a Natural Language Processing package that
deals with "Topic Modeling for Humans" [32]. Thus, Gensim provides the implemen-
tation of the most popular topic modeling techniques as LDA and LSA. Moreover,
Gensim is considered as an ideal solution for tasks such as converting words to
word vectors (Word2Vec, FastText), building paragraph vectors (Doc2Vec), finding
text similarity and text summarization. It also has implementation of non-negative
matrix factorization (NMF), tf-idf and random projections. The most substantial ad-
vantage of Gensim is that it can easily handle large text collections without having
to load the entire file in memory which differentiates it from most other ML libraries
that work only with in-memory processing. In our experiments we used Gensim for
implementing LDA, LSA models, loading the pretrained Word2Vec vectors and train
Doc2Vec on text documents.

Scikit-learn is a popular Python library that supports supervised and unsuper-

37

CHAPTER 3. EXPERIMENTS

vised learning tasks. The basic functionality of Scikit-learn was derived from previ-
ously discussed packages NumPy and Scipy, hence, it is fully compatible with them.
Many useful adds-on have been designed for common ML algorithms such as cluster-
ing, regression and classification including support vector machines, random forests,
gradient boosting, k-means and DBSCAN. We used Scikit-learn to measure the dis-
tance between documents, construct term-document matrix, provide performance
measure report (e.g. confusion matrix, accuracy) and for clustering.

NLTK (stands for Natural Language Toolkit) is one of the most powerful libraries
in Python for statistical NLP to operate on English written texts [7]. It provides
packages to make machines understand human language and give a relevant response
to it. This is achieved by such techniques as tokenization, stemming, lemmatization,
punctuation, tagging, parsing, character count and word count supported in NLTK.
This library was successfully used in our experiments for text pre-processing tasks.

3.5 Off-topic essays detection

Every user input has to pass through a proper validation mechanism before comput-
ing the score to increase the use-ability of AEE systems. Every well-written essay
that does not address the question topic may receive a good score from an AEE
system because of linguistic features, such as text structure and surface [18]. One
of the issues to be addressed is the detection of essay written out of the context of
the prompt, called off-topic. Off-topic essay detection is an identification of student
essay which is not written to the test question topic. It has great significance to get
the user’s confidence in AEE systems and also for improving the fairness, robust-
ness, and accuracy of AEE systems. Such problems should be addressed by using
off-topic essay detection methods alongside with AEE systems[18] to build the trust
of the user’s of AEE systems. In our work, we proposed and implemented two-hybrid
approaches by combining Latent Dirichlet Allocation with Latent Semantic Anal-
ysis and Word Movers Distance namely LDA_LSA and LDA_WMD for off-topic
detection. In both of the methods, LDA was used to extract topic words for each
prompt.

To evaluate the performance of the proposed approaches, the kaggle dataset
(discussed in 3.1.1) of student essays was used in the implementation. Firstly, we
generate a reference answer for a target essay set as the dataset we used did not

38

CHAPTER 3. EXPERIMENTS

have actual reference answers using Latent Dirichlet Allocation. From the kaggle
dataset, we chose three sets of essays (sets 4, 5 and 6) written on a specific topic
which we think are appropriate for this task. The off-topic essays in the data set
mainly consist of two sources. One is selected from the original data set and was
drawn from among a set of essays assigned a score of 0 by human graders, and the
second one is by randomly selecting essays from other topics to extend the number
of off-topics for each set.

Figure 3.7: Topic words extracted from the best-scored essays

The words shown in Figure 3.7 were fetched from the best essays of set 6. The
raw data was firstly preprocessed by tokenizing, stemming and removing stopwords
and fed into LDA in a shape of Bag-of-words model for each document. These words
will be later play a role of a reference answer for the original essay set.

The target set does not have enough off-topics, hence, we decided to populate
the off-topic data by adding the essays from the other sets.

Original Prompt Other Prompts On-topic essays Off-topic essays

The Obstacles the Builders of the
Empire State Building faced in
attempting to allow dirigibles to Dock

Winter Hibiscus by
Minfong Ho (first
case)

1756 1816

The Blueprints of Our
Lives by Narciso Ro-
driguez (second case)

1756 1849

Table 3.3: Our Datasets.

The original essay set contains 1800 documents in total having 1756 on-topic
essays and 44 off-topic essays. Other prompts represent two sets of essays written

39

CHAPTER 3. EXPERIMENTS

on different topics that should be treated as off-topic essays when comparing to the
reference answer which was extracted from the original essay set.

As was already mentioned above, we processed the off-topic detection in two
models: LSA and WMD. The data for LSA was represented as Tf-idf matrix of the
preprocessed documents. Finally, the LSA vector of a reference answer was compared
to all the LSA vectors including the original essay set and the essay set written in
another topic. In case of WMD model, the pretrained word embeddings were used
containing 3 millions of word vectors from Google News. Having the word vectors
for each of the document, we computed the similarity between our reference answer
and all the documents from the original topic and another topic. [39]

3.5.1 Results and discussion

This section describes the results of the experiment carried out to detect off-topic
essays. As you can see from the Tables 3.4 and 3.5, both LSA and WMD models
performed well in detecting off-topic essays. However, independently of the content
of off-topics, LSA model performed with 98% accuracy in both cases, whereas WMD
performed with 95% and 91% accuracy. The precision of LSA is estimated as 96% and
97% which means that in both cases the rate of False Positives was low. For WMD
the precision is 97% in the first case which is quite good. However, it has only 90%
of precision in the second case which indicates high rate of False Positives. Recall for
LSA comprises 99% and 100% in the first and second cases, while in WMD the recall
is 92% in both cases. It means that LSA has a lower rate of False Negatives compared
toWMD. It is recommended to have a low rate of False Negatives in Automatic Essay
Evaluation system as we should be more concerned about misleading a student that
he/she has written an off-topic essay rather than about missing an off-topic essay
[18].

Performance metrics LDA+LSA LDA+WMD

Accuracy 0.984 0.951

Precision 0.968 0.973

Recall 0.999 0.924

Table 3.4: Performance statistics of the first case.

40

CHAPTER 3. EXPERIMENTS

Performance metrics LDA+LSA LDA+WMD

Accuracy 0.985 0.916

Precision 0.970 0.906

Recall 1.000 0.924

Table 3.5: Performance statistics of the second case.

The figures 3.8 and 3.9 represent the non-normalized confusion matrices of the
actual and predicted documents.

(a) first case (b) second case

Figure 3.8: Confusion matrix of the LDA+LSA results

41

CHAPTER 3. EXPERIMENTS

(a) first case (b) second case

Figure 3.9: Confusion matrix of the LDA+WMD results

The main objective of this experiment was to check the performance of widely
accepted models in semantic text similarity on off-topic essay detection without need
of a specific large amount of training data. The results showed that both models
distinguished one topic from another very well. Nonetheless, with very similar rate
of False Positives in both models, the LSA model excelled having relatively low rate
of False Negatives as opposed to WMD model.

3.6 Plagiarism detection

Plagiarism is one of the growing issues in academic and research field, raising more
concerns in evaluating students performance in teaching and learning using essay
exams . During submitting solutions to essay exams , students may commit plagia-
rism by copying and pasting solutions from other students. It has become a very
common issue when evaluating the students work and their creativeness. To address
this issue, One approach using lexical similarity(Tf-idf) and two other approaches
using semantic similarity(LSA and WMD). The experimental results show that lex-
ical similarity approach using tf-idf and cosine similarity performed well than the
other semantic similarity approaches. The Clough & Stevenson dataset 3.1.2 was
used in this experiment. As shown in the Table 3.1, there were 19 answers per-

42

CHAPTER 3. EXPERIMENTS

formed for each of 5 tasks. There were also the reference answers for each task taken
from Wikipedia articles so we could predict the level of plagiarism comparing the
reference answer to the answers of participants. Thus, in all the three methods we
implemented (WMD, LSA, Tf-Idf), the similarity between the reference document
and the simulated document was computed and based on the appropriate threshold,
a certain level of plagiarism was designated to the given simulated document.

3.6.1 Results and Discussion

Task WMD LSA Tf-Idf+Cosine

A 0.68 0,73 0.84

B 0.31 0.63 0.68

C 0.36 0.52 0.58

D 0.57 0.63 0.68

E 0.52 0.63 0.74

Table 3.6: Accuracy Performance of the implemented approaches

43

CHAPTER 3. EXPERIMENTS

Figure 3.10: Confusion matrix of the WMD results

44

CHAPTER 3. EXPERIMENTS

Figure 3.11: Confusion matrix of the LSA results

45

CHAPTER 3. EXPERIMENTS

Figure 3.12: Confusion matrix of the Tf-idf+Cosine results

46

CHAPTER 3. EXPERIMENTS

As shown in the Table 3.6, a simple Tf-Idf combined with Cosine similarity
performed better than WMD and LSA. The problem with semantic models in this
implementation is that they tend to have a quite high similarity result between
texts which are written on the same topic but have different lexical and grammatical
structures. In other words, the similarity difference between the five categories of
plagiarism was not too visible and in some cases it overlapped. For example, the non-
plagiarised answer might be more similar to the prompt than a lightly plagiarised
answer which is actually wrong. This situation is illustrated in the Figure 3.10 in the
matrix for Task B where six non-plagiarized answers have been predicted as lightly
plagiarised. When it comes to Tf-idf, it can easily distinguish the non-plagiarised
answers from others because it is not focusing on the context but only bases its
measure on the frequency of words in the documents. The distinction between other
categories was also good. In the Figure 3.12 in Task D three "cut" and three "light"
answers were predicted correctly.

The objective of this task was to check which method of document similarity
would be more suitable for plagiarism detection. As results showed, Tf-idf combined
with cosine similarity performs better than semantically focused models.

3.7 Score propagation

The objective this section is to find a simplest and easiest way to score essays with
small amount of labeled essay sets. To achieve the objective, we used clustering
methods to automatically cluster essay into different clusters and the teacher will
only score the centriods’ of each cluster and the score of the centriod will then be
propagated to other members of the cluster.

Therefore, we implemented K-means clustering method to partition the set of
documents in order to further predict the scores for each cluster. The kaggle dataset
was used in this experiment. The first and second essay sets were chosen which
contain the human scores with a range of [2 − 12] and [1 − 6] respectively. The
following steps were performed during this experiment:

1. We used three different approaches, i.e. Latent semantic Analysis(LSA), Word2vec
and Doc2vec, to semantically represent the input essay set.

47

CHAPTER 3. EXPERIMENTS

2. After learning the feature vectors semantically, we used K-means clustering to
cluster and further to sub cluster the essay.

3. Then, the true score of each centroid was propagated to the other members of
each cluster.

3.7.1 Results and discussion

The experimental results of the proposed approaches are presented in Table 3.7,
Figure 3.13 , Figure 3.14 and figure 3.15.

LSA Word2Vec Mean Doc2Vec

0.47 0.48 0.54

0.49 0.54 0.55

Table 3.7: Accuracy performance of the implemented approaches

The accuracy performance in the Table 3.7 shows that all the three proposed
approaches had similar results. However, Doc2Vec outperformed in both cases having
54% and 55% of accuracy respectively.

Figure 3.13: Confusion matrix of the Doc2Vec results

48

CHAPTER 3. EXPERIMENTS

Figure 3.14: Confusion matrix of the Word2Vec Mean results

Figure 3.15: Confusion matrix of the LSA results

The overall result showed that around half of scores have been predicted by clus-
tering the documents. Apparently, the result is not brilliant. However, the perfor-
mance in Figures 3.13, 3.14 and 3.15 shows that the highest errors are concentrated
among the grades that are closed to each other. For example, in the first case of all
the three confusion matrices it is shown that the highest errors are concentrated in
confusing the scores between 6, 7 and 8. Meanwhile, the second case illustrates the
highest concentration of the errors in confusing between the scores 2 and 3. This
can be explained by a small difference between the essays that have close scores,
hence, these kind of essays might be designated to the wrong clusters. Still, most
existing supervised-based evaluation approaches utilize around 70% of training data
to achieve a reasonable performance results of 80− 90% accuracy. In our case, both
sets were firstly partitioned by five clusters that in their turn were partitioned by 50
clusters each. Thus, only 250 points out of around 1800 points of data (15%) were
utilized to get the actual scores for further propagating them to the rest of essays.
We have achieved around 50% of accuracy which is actually quite good having that

49

CHAPTER 3. EXPERIMENTS

much of data.

50

CHAPTER 4. CONCLUSION AND FUTURE WORK

Chapter 4

Conclusion and Future Work

This study aimed to enhance the use-ability of Automatic Essay Evaluation (AEE)
systems by implementing unsupervised prediction algorithms without having a specif-
ically labeled training data and also by integrating features for validating inputs to
the AEE system. These algorithms will help a user of AEE to filter out "bad essays"
(off-topic or plagiarised) and also minimize the effort of manual annotation of a large
amount of student essay solutions.

In the experiment for detecting off-topic essays, we implemented two hybrid
models LDA_LSA and LDA_WMD. Firstly, we generated a reference answer using
LDA from the essay set that we considered as original and written on the topic of the
essay question. Then, we constructed an off-topic dataset having the off-topic essays
from the original set which have a score of zero and a randomly chosen set written on
a different topic. WMD and LSA were used as a model for identifying either the essay
is on-topic or off-topic using the similarity threshold value determined during the
experiment. The results showed that both models performed similarly well, filtering
out the essays that were not written on the generated reference answer with fairly
low rates of False Positives and False Negatives. However, the LDA_LSA model
outperformed having a lower rate of False Negatives.

To detect student essays which are "plagiarised", we proposed and implemented
two context level models (WMD and LSA) and one with Lexical model (simple
TF-IDF approach). according to our experimental results, a simple lexical approach
using TF-IDF representation performed well than the other models which consider
the semantic or contextual similarity between the essays.

The last experiment was aimed at building the algorithm to automatically score

51

CHAPTER 4. CONCLUSION AND FUTURE WORK

student essays with a minimum usage of training data. We used Doc2Vec, Word2Vec
and SVD to generate the vector representation of documents. Then we used K-means
clustering to cluster and further sub-cluster the documents where k is equal to five in
the first iteration and k was 50 in creating sub-clusters. Finally, we propagated the
actual scores of each cluster centroid to all the members of each cluster. According to
our experimental results, Semantic k-means clustering using Doc2vec has performed
well with an accuracy of 55% which is better than the other baseline by only labelling
15% from the given data sets.

All the experiments were conducted on the datasets with a limited size and the
performance of the proposed models might increase if the experiment is replicated
with relatively large datasets. In Off-topic detection, it would be highly useful to have
more samples of student essays written on a particular subject but not answering the
test question. Having a well-written reference answer for each topic would improve
the results as well. For plagiarism detection and score propagation tasks, it would be
generally better to have more data samples for each category of plagiarism and each
score respectively. Therefore, the future direction in the area would be to replicate
the approaches using the datasets which are collected for such a task.

52

BIBLIOGRAPHY

Bibliography

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness
of euclidean sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

[2] ASAP-SAS. Scoring short answer essays. asap short answer scoring competition
system description. http://www.kaggle.com/c/asap-sas/, 2012.

[3] Bhagyashree Vyankatrao Barde and Anant Madhavrao Bainwad. An overview
of topic modeling methods and tools. In 2017 International Conference on
Intelligent Computing and Control Systems (ICICCS), pages 745–750. IEEE,
2017.

[4] Jerome R Bellegarda. Latent semantic mapping [information retrieval]. IEEE
Signal Processing Magazine, 22(5):70–80, 2005.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[6] Michael W Berry, Susan T Dumais, and Gavin W O’Brien. Using linear algebra
for intelligent information retrieval. SIAM review, 37(4):573–595, 1995.

[7] Steven Bird, Edward Loper, and Ewan Klein. Natural language toolkit. J URL
http://www. nltk. org, 2009.

[8] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
In Advances in neural information processing systems, pages 601–608, 2002.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

53

http://www.kaggle.com/c/asap-sas/

BIBLIOGRAPHY

[10] Roger Bradford. Techniques for processing lsi queries incorporating phrases. In
International Joint Conference on Knowledge Discovery, Knowledge Engineer-
ing, and Knowledge Management, pages 99–117. Springer, 2014.

[11] P. Raghavan C. D. Manning and H. Schutze. Introduction to information re-
trieval. Cambridge University Press, 2008.

[12] Paul Clough and Mark Stevenson. Developing a corpus of plagiarised short
answers. Language resources and evaluation, 45(1):5–24, 2011.

[13] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[14] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-
port. In Advances in neural information processing systems, pages 2292–2300,
2013.

[15] John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic
analysis, 1957.

[16] George W Furnas, Scott Deerwester, Susan T Dumais, Thomas K Landauer,
Richard A Harshman, Lynn A Streeter, and Karen E Lochbaum. Information
retrieval using a singular value decomposition model of latent semantic struc-
ture. In Proceedings of the 11th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 465–480. ACM,
1988.

[17] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[18] Derrick Higgins, Jill Burstein, and Yigal Attali. Identifying off-topic student
essays without topic-specific training data. Natural Language Engineering,
12(2):145–159, 2006.

[19] Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q Wein-
berger. Supervised word mover’s distance. In Advances in Neural Information
Processing Systems, pages 4862–4870, 2016.

54

BIBLIOGRAPHY

[20] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666, 2010.

[21] Karen Spärck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 28:11–21, 1972.

[22] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word
embeddings to document distances. In International conference on machine
learning, pages 957–966, 2015.

[23] Alberto Lavelli, Fabrizio Sebastiani, and Roberto Zanoli. Distributional term
representations: an experimental comparison. In Proceedings of the thirteenth
ACM international conference on Information and knowledge management,
pages 615–624. ACM, 2004.

[24] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196,
2014.

[25] Elizaveta Levina and Peter Bickel. The earth mover’s distance is the mallows
distance: Some insights from statistics. In Proceedings Eighth IEEE Interna-
tional Conference on Computer Vision. ICCV 2001, volume 2, pages 251–256.
IEEE, 2001.

[26] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on infor-
mation theory, 28(2):129–137, 1982.

[27] H. P. Luhn. A statistical approach to mechanized encoding and searching of
literary information. IBM Journal of Research and Development, 1(4):309–317,
Oct 1957.

[28] David JC MacKay and David JC Mac Kay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[30] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 Conference of

55

BIBLIOGRAPHY

the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 746–751, Atlanta, Georgia, June 2013.
Association for Computational Linguistics.

[31] Chandan K Reddy and Bhanukiran Vinzamuri. A survey of partitional and
hierarchical clustering algorithms. In Data Clustering, pages 87–110. Chapman
and Hall/CRC, 2018.

[32] Radim Rehurek and Petr Sojka. Software framework for topic modelling with
large corpora. In In Proceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks. Citeseer, 2010.

[33] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by
locally linear embedding. science, 290(5500):2323–2326, 2000.

[34] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions
with applications to image databases. In Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271), pages 59–66. IEEE, 1998.

[35] Gerard Salton and Christopher Buckley. Term-weighting approaches in au-
tomatic text retrieval. Information processing & management, 24(5):513–523,
1988.

[36] Gerard Salton and Michael J. McGill. Introduction to modern information
retrieval (pp. paginas 400), 1986.

[37] Stephen V Stehman. Selecting and interpreting measures of thematic classifi-
cation accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[38] Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated essay
scoring. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1882–1891, 2016.

[39] Tsegaye Misikir Tashu and Tomás Horváth. Pair-wise: Automatic essay evalu-
ation using word mover’s distance. In CSEDU (1), pages 59–66, 2018.

[40] Tsegaye Misikir Tashu and Tomáš Horváth. A layered approach to automatic
essay evaluation using word-embedding. In Computer Supported Education,
pages 77–94, Cham, 2019. Springer International Publishing.

56

BIBLIOGRAPHY

[41] Tsegaye Misikir Tashu and Tomáš Horváth. Semantic-based feedback recom-
mendation for automatic essay evaluation. In Yaxin Bi, Rahul Bhatia, and
Supriya Kapoor, editors, Intelligent Systems and Applications, pages 334–346,
Cham, 2020. Springer International Publishing.

[42] Tsegaye Misikir Tashu, Dávid Szabó, and Tomáš Horváth. Reducing annotation
effort in automatic essay evaluation using locality sensitive hashing. In Andre
Coy, Yugo Hayashi, and Maiga Chang, editors, Intelligent Tutoring Systems,
pages 186–192, Cham, 2019. Springer International Publishing.

[43] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy ar-
ray: a structure for efficient numerical computation. Computing in Science &
Engineering, 13(2):22, 2011.

[44] Xiaojun Wan and Yuxin Peng. The earth mover’s distance as a semantic mea-
sure for document similarity. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 301–302. ACM,
2005.

57

	Introduction
	Motivation
	Thesis outline

	Theoretical review
	Data preprocessing
	Tokenization
	Stemming and lemmatization

	Feature Extraction - Bag-of-words model
	Term Frequency-Inverse Document Frequency (TF-IDF)
	Term Frequency (TF)
	Inverse document-frequency (IDF)
	TF-IDF
	Limitations of TF-IDF approach

	Distributional semantics
	Classic Word Embedding Model
	C&W neural language model
	Word2Vec
	Doc2Vec

	Models
	Latent Dirichlet Allocation (LDA)
	Latent Semantic Analysis (LSA)
	Word Mover's Distance (WMD)
	Clustering - K-means algorithm

	Experiments
	Datasets
	Kaggle dataset
	Clough & Stevenson dataset

	Similarity metrics
	Cosine similarity
	Earth Mover's Distance

	Performance Measures
	Implementation details
	Packages used

	Off-topic essays detection
	Results and discussion

	Plagiarism detection
	Results and Discussion

	Score propagation
	Results and discussion

	Conclusion and Future Work

