
Eötvös Loránd Tudományegyetem

Informatikai Kar

Data Science and Energeeing Department

Decision making supporting with
essay score prediction

Dr. Tamás Horváth

Head of Department

Dávid Szabó

Programtervező Informatikus BSc

Budapest, 2019

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

INFORMATIKAI KAR

SZAKDOLGOZAT-TÉMA BEJELENTŐ

Név: Szabó Dávid Neptun kód: JLF6V4

Tagozat: nappali (nappali vagy esti) Szak: programtervező informatikus BSc

Témavezető neve: Dr. Horváth Tamás

munkahelyének neve és címe: 1117 Budapest, Pázmány Péter sétány 1/C

beosztása és iskolai végzettsége: Tanszékvezető

A dolgozat címe: Decision making supporting with essay score prediction
A dolgozat témája:

As widely known, in the modern social system, where the education is available for the mass,
a lot of overloaded teachers suffer from the huge number of essays and tests, which have to
be corrected. Very often, the students have to write the tests about the same topic so the
scoring process can be very boring and monotonous because they make the same statements
and the same errors again and again. This trend will increase with the spread of online
learning systems, where fortunately the essays are in digital format.

In this paper, I propose a method and a framework on essay score prediction in order to
support the decision making of teachers who are expected to correct large quantities of
essays on the same topic. The proposed method will be implemented in Python due to the
fact, for Python, there are many available libraries for supporting development especially in
the field of Data Science.

As almost every Data Science process, this solution also can be divided into three important
and individual steps. The first step is preprocessing the data, and transforming it into a proper
format. The second step is making predictions on the target values based on the model.
Finally, the third step is the evaluation, which indicates how good the proposed model and
that's hyperparameters are on a certain task. If the results are satisfactory, a good
recommender system can be made by the process.

Since this method has to find the essays with similar meanings for predicting the scores of
ones by others, the model has to be able to represent the text in a way that the semantic
meaning of essays will be comparable easily. For this reason, the method requires a suitable
natural language model, and for time-efficiency, it uses estimating methods to measure
similarity.

A témavezetést vállalom:

 ..
(a témavezető aláírása)

Kérem a szakdolgozat témájának jóváhagyását.

Budapest, 20…………….

 ..
(a hallgató aláírása)

A szakdolgozat-témát az Informatikai Kar jóváhagyta.
Budapest, 20……………

 ..
 (a témát engedélyező tanszék
 vezetője)

Contents

Acknowledgement 1

1 Introduction 2

2 User documentation 3

2.1 Problem . 3

2.2 Solution . 4

2.2.1 Preprocessing step . 4

2.2.2 Modelling step . 5

2.2.3 Evaluation step . 7

2.3 Requirements . 8

2.3.1 Software requirements . 8

2.3.2 Package requirements . 9

2.4 Running . 9

2.4.1 Interface of Jupyter Notebook 10

3 Developer documentation 12

3.1 Problem . 12

3.1.1 General problem specification 12

3.1.2 Regression problem . 12

3.1.3 Classification problem . 12

3.1.4 Used Metrics . 13

3.2 Used methods and models . 13

3.2.1 Evaluation metrics . 13

3.2.2 N-grams . 14

3.2.3 Word2vec . 15

3.2.4 MinHash . 15

3.2.5 LSH . 16

3.2.6 Semantic Graph . 17

3.3 Project structure . 19

3.3.1 Package diagram . 19

3.3.2 File tree . 20

3.3.3 Class diagram . 21

3.4 Classes . 22

3.4.1 HashFunctionGenerator . 22

3.4.2 MinHash . 23

3.4.3 MaxHash . 24

3.4.4 LSH . 24

3.4.5 TextTransformation . 27

3.4.6 SemanticGraphRegression . 31

3.4.7 SemanticGraphClassification 34

3.5 Functions . 36

3.5.1 metrics.py . 36

3.6 Testing . 42

3.6.1 Test plan . 42

3.6.2 Unit tests . 42

3.6.3 Experimental Results . 43

4 References 44

Acknowledgement

I would like to express my special thanks of gratitude to my supervisor Dr. Tamás

Horváth for his great assistance and for the opportunity to join in his research with

Tsegaye Misikir, who also helped me through my work.

Finally, I must express my very profound gratitude to my parents and to my fi-

ancée Dóra Kovács for providing me with continuous encouragement and support

throughout my years of study and through the process of researching and writing

this thesis. This accomplishment would not have been possible without them.

Thank you.

Dávid Szabó

1

1 Introduction

2

2 User documentation

2.1 Problem

In Data Science, working with textual dataset is a highly challenging task as the

characterisation of a text or comparison of documents can be very difficult. How-

ever, there are a large number of real-life problems which are significantly related to

or depend on textual data, such as automatic essay score evaluation, spam filtering

and sentiment analysis. The problem is the complexity and the lack of a profound

understanding of natural languages. In computer science, we like to work with quan-

titative and numerical data because we have mathematical and numerical tools to

make computations easily with them. Unfortunately, so far we can not express the

meaning of a document or even a sentence with numbers without a great loss. How-

ever, there is some method which can be used to represent documents as numerical

data to solve some problems well enough to apply them in real life. In this essay,

I propose a method for scoring texts by the similarity to other texts annotated by

humans. This is a so-called supervised learning task. With other words, the model

tries to learn a function which maps the input (text) to an output (score) based on

example input-output pairs, called training data set.

Figure 1: Process flow from perspective of model user

Though this problem specification fit on a lot of different tasks, I will present

the proposed model on the following two datasets (one for a regression task, and

one for a classification task):

Automatic essay score evaluation

The texts are short essays which are written about a certain topic, and the scores

are the grades which are given by a teacher. The goal is to predict the grade of the

uncorrected essays to support the decision making of the corrector. To determine

the performance of the model, the annotated dataset will be divided into a training

3

dataset to train the model and a test dataset to measure the performance of the

trained model. As a grade is a quantitative and ordinal value, this is a regression

task. The dataset is provided by the Hewlett Foundation at Kaggle1.

Spam filtering

The texts are short tweets which are classified as aggressive or not, thereby the scores

are 1 or 0, respectively. The goal is to determine whether a tweet is aggressive or not.

To assess the performance of the model, the annotated dataset will be divided into

a training dataset to train the model and a test dataset to measure the performance

of the trained model. As the score is a binary, nominal value, this is a classification

task. The dataset is provided by user DataTurks at Kaggle2.

2.2 Solution

As almost every Data Science process, this solution also can be divided into three

important, sequential and individual steps. The first step is preprocessing the data,

and transforming it into a proper format. The second step is making predictions

on the target values based on the model. Finally, the third step is the evaluation,

which indicates how good the proposed model and that’s hyper-parameters are on

a certain task. If the results are satisfactory, a good recommender system can be

made by the process. To make these steps easier, I have created a Jupyter Notebook

including preprocessing, modelling and evaluation actions to generate a report about

the performance of this algorithm on a certain dataset. As notebooks can be edited

easily, further modifications and adjustments can be performed simply by a Data

Scientist wanting experiment a supplementation of the model.

Figure 2: Main steps of a data science project

2.2.1 Preprocessing step

We can regard preprocessing as a noise filtering or dimensionality reduction step

as it produces simpler representation by removing special characters, numbers from

the text and converting characters to lowercase. To make this part simpler to do a

class called “TextTransformation” was created, which can help to apply the most

1https://www.kaggle.com/c/asap-sas
2https://www.kaggle.com/dataturks/dataset-for-detection-of-cybertrolls

4

frequent text transformations on the documents to improve the performance of fur-

ther operations. By default, in this step, the text will be converted to lowercase

furthermore numbers, special characters and stopwords will be removed.

Figure 3: A possible pipeline for text preprocessing

2.2.2 Modelling step

First and foremost, we need to represent texts such that we could compare them

to each other easily. In this phase, we implemented two different approaches, the

first one using n-grams and the other one using Word2Vec vectors. For n-gram

representation, each text will be converted into a Bag of Words(BoW) by extracting

n-grams from them, where n-gram is a contiguous sequence of n characters from the

given text. In this way, we have a set of strings instead of a raw text to represent

an instance. For Word2Vec vectors, each word from each text will be mapped into a

high dimensional vector space with a trained word embedding function so that for

each text we will have a set of high dimensional vectors.

Figure 4: Simplified overview of the proposed model

Presumably, similar texts will have similar scores, consequently, similar set rep-

resentations will have approximately similar scores as well. Jaccard Index is one of

5

the most popular metrics expressing the similarity of two sets, however, unfortu-

nately, if we want to find the most similar sets we need to do n2

2
comparison, which

is unfeasible in case of large databases. So instead of computing the similarity for all

pairs, the algorithm represents all set of n-grams or set of vectors with a fingerprint

of size n by MinHashing them with a permutation number n. Note: the hashing tech-

nique differs in the two different text representation. Based on those fingerprints,

LSH (Locality-sensitive hashing) can recommend pairs which are likely to similar to

each other, and the time complexity of that is just n. In this way, we are able to

reduce the number of comparisons. Next, we compute the real Jaccard index of the

recommended pairs to filter out the false positives whose similarity value are not

larger than a certain threshold. Finally, we can predict the score of a given text by

calculating the average of the scores of similar texts from the annotated datasets.

For further information about the above-mentioned methods you can check the

developer documentation, however, here is some heuristic which may help to find an

optimal hyper-parameter set:

• Window size: (the length of n-grams, positive integer) If we pick n too small,

all documents will appear to be similar to each other, however, if we pick it too

large, even similar documents will have a totally different representation. The

aim is to choose n large enough to have the probability of an n-gram occurring

in a text low but not too low. As a result, to choose an optimal window size,

one should consider the cardinality of the character set and the average length

of texts in your dataset.

• Permutation Number: (hyper-parameter of MinHash, positive integer) It is

mathematically proved that if permutation number tends to infinity, the Jac-

card Index of two fingerprints generated from two sets by MinHashing tends to

the Jaccard Index of the two sets. However, with a low permutation number, we

also can reach a satisfactory performance. To choose an optimal permutation

number, one should strike a balance between running time and the probability

of good approximation.

• Band size: (hyper-parameter of LSH, positive integer) It is important to men-

tion that, permutation number must be divisible by band size. To generate

recommended pairs, LSH splits each fingerprint into slices of the length of

band size and maps these slices into buckets. Two objects will be suggested to

be similar if at least one of their slices appears in the same bucket. Therefore,

if band size smaller, there will be more matches and, naturally, more false

positives, however, if it is too large, a lot of similar items will not be found.

6

Thus, to find an optimal band size, one should strike a balance between too

more and too few matches.

• Threshold (floating-point number range between [0, 1]): Having got the rec-

ommended pairs by LSH, we probably have some false positives so before we

concern a pair to be similar, we compute the Jaccard Index for their finger-

print and regard them as similar only if the index is larger than the threshold.

It depends on the task and the quality of fingerprints that how similar items

we want to regard as similar.

2.2.3 Evaluation step

The purpose of this step is measuring how well a model, with a given parameter set,

can predict the score of a previously unseen input, with other words how well the

model can generalize from the training data to the unseen data. Thus, to evaluate

the performance, we usually need to have training and test dataset so we can train

the model with the former and evaluate with the latter. One solution could be

simply splitting the dataset into random training and test subsets. However, the

performance of the model can depend highly on the quality of the random split.

Figure 5: Visualization of cross validation

An improved technique is cross-validation, also called rotation estimation, which

splits the annotated dataset into n equal fragments, train the model once with each

combination of n− 1 fragments and test the trained model with the remaining one

fragment. The final accuracy or performance of a certain model will be the average

performance of the n evaluation. This method reduces the overfitting as the model

7

will use most of the data for validation and also reduce the underfitting as the

majority of the data will be used as the training set also. Parenthetically, overfitting

means that the model performs very well on the training dataset but very poorly on

the test dataset, in contrast to underfitting, when the model performs poorly both

of the training and the test dataset.

As I previously mentioned, I will present this model on two different dataset for

two different tasks, one for regression and one for classification, for both of them we

need to use different kinds of metrics to express their performance.

• For classification by default, the evaluation step will use the accuracy metric,

which is defined as the percentage of correct predictions. It is a sufficient basic

metric, though, if for example, a dataset consists significantly more class from

one than from the other, the result can be misleading. F1 score is more general

and more meaningful in those cases.

• For regression problems, we rather like to express the error of the model instead

of the accuracy, which is hardly interpretable in this case. If the error is smaller,

the model is better. The default metric what the evaluation step use to indicate

the error is Mean Absolute Error (MAE). However, for certain tasks, Root

Mean Square Error (RMSE), which penalty the larger deviations better than

the smaller, is more meaningful and expressive and would be a better choice.

For cross-validation we sometimes use these metrics with a negative sign so if

the negative error is larger, the model is better.

Please consult the developer documentation for more details about the imple-

mented metrics for classification and regression.

2.3 Requirements

The method is implemented using Python 3, the necessary Python packages can be

installed with pip3 (The Python Package Installer) and the user interface is a Jupyter

Notebook. As Python is a cross-platform language and Jupyter Notebook supports

all popular operating systems, we can regard this code as platform independent.

2.3.1 Software requirements

Programs required to be installed:

• A suitable browser (Chrome, Firefox, Safari etc.)

• Python 3.5 or above

• pip3

8

2.3.2 Package requirements

After the above-listed programs have been installed, the following Python packages

are also necessary to be installed by pip3 (console: pip install “package name”):

• jupyter

• numpy

• pandas

• networkx

• unittest

• matplotlib

A virtual Conda environment with the above-listed packages can also be suffi-

cient. Running

2.4 Running

In this section, you can find a step by step guide for starting a Jupyter Notebook

Server on your computer in the local environment and analysing a dataset with the

proper notebook.

Steps:

1. Check if your system meets with all requirements, listed in the previous section.

If not, please install all required software and packages or if it is not possible

you can run it in the clouds or in a remote server.

2. Download SemanticGraph.zip and unzip it into your working folder.

9

3. Open a terminal (or a command line) in your working folder, and run the

following command to start a local server at 8888 port. You can change the

port number to another if 8888 is already reserved. If you want to run your

notebook server in a remote computer and want to use it in your personal

computer you need to do port forwarding with SSH with this port number

also. jupyter notebook –port=8888

4. Having started a notebook server, the program will print a link whereby you

can access to the hosted jupyter notebook application running either on your

local computer or a remote server. With this Dashboard, you can upload files,

navigate between folders, removing and renaming files, and open notebooks

(.ipynb file extension).

5. If you want to use one of the example datasets you can jump over this step.

However if you want to analyse or running an experiment on your own dataset,

you should navigate into the datasets folder and upload your files with the

upload button located in the right top corner.

6. Next, you need to determine that if your prediction type is regression or classi-

fication. Based on your decision, you should choose and open the corresponding

notebook file.

7. After you have opened the notebook, you are able to run the code, make your

own experience and edit it like every other python code. One might take ad-

vantage of modification of hyperparameters, preprocessing or evaluation steps.

8. If you are not experienced in using Jupyter notebooks, this brief explanation

might be useful. In the toolbar, there are the most common actions what you

can do with your notebook. The following list will introduce the most-used

operations as well as the most important parts of a notebook:

2.4.1 Interface of Jupyter Notebook

10

1. Cell: the place of code and descriptions, with (13) you can set the type of the

selected cells

2. Save

3. Insert a cell below the selected cell

4. Cut selected cells

5. Copy selected cells

6. Paste selected cells below

7. Move selected cells up

8. Move selected cells down

9. Run selected cells

10. Interrupt the kernel (stop the program)

11. Restart the kernel (you will lose your local variables and objects)

12. Restart the kernel and run the whole notebook

13. The type of selected cells, the two most popular types are code and markdown

14. Name of the notebook

11

3 Developer documentation

3.1 Problem

In Data Science, we often want to predict numerical attribute of instances based

on an annotated sample datasets. It is a well-understood area, to predict scores of

instances having numerical attributes, however, predict scores of textual datasets is

a highly challenging task. But this ability would be useful in many real-life problems

such as scoring the huge number of essays or determining one’s sentiment based on

his or her feedback on a film or product. In this paper, I propose a method to solve

a part of this problem.

3.1.1 General problem specification

Given a set of N training examples of the form {(x1, y1), (x2, y2), . . . , (xN , yN)} such

that xi is a textual data, and yi is its score, the aim is to find a function m : X → Y

which can estimate the scores of the total population with the least error of some

g : Y × Y → R loss function or with the maximum gain of some g : Y × Y → R
gain function.

3.1.2 Regression problem

If the range of m is quantitative and ordinal or continuous, the problem of finding

m is a regression problem. This is the case, for instance, if want to predict the scores

of essays.

3.1.3 Classification problem

If the range of m is qualitative or nominal the problem of finding m is a classification

problem. Like the majority of classification models, this model is also not able to

handle more than 2 classes so the classification algorithm can only predict binary

values. However as it is able to predict the probability of an instance belonging to

class 1, its capabilities can be extended with the one-vs.-rest strategy, which trains

a binary classifier for each different classes by converting their labels to class 1 and

the rest of the classes to class 0. In this way, all binary classifier will predict the

probability of an instance belonging to that certain class. So if we apply the ArgMax

function on these binary classifiers we can make a prediction on classes of multiclass

datasets as well.

12

3.1.4 Used Metrics

For regression, the two most popular loss functions, which we want to minimize

over the population, are the following two

• MAE (Mean Absolute Error)

• MSE (Mean Squared Error)

• RMSE (Root Mean Squared Error)

For classification, however we want to maximize the following scores over the

population:

• Accuracy

• Precision

• Recall

• F1 score

3.2 Used methods and models

3.2.1 Evaluation metrics

For regression problems, we usually express the error of the model instead of the

accuracy, which is hardly interpretable in this case. If the error is smaller, the model

is better. However, we can use score maximization techniques if we change the sign

of the metric to negative. One should thoroughly consider which loss function fit

better on the given task. If one wants to penalty all deviation uniformly MAE can

be a good choice, but if the larger deviation is worse than the small RMSE is better

(if the range is not between 0 and 1).

• Mean Absolute Error
1

n

n∑
i=1

|yi − ŷi|

• Mean Squared Error
1

n

n∑
i=1

(yi − ŷi)
2

• Root Mean Squared Error √√√√ 1

n

n∑
i=1

(yi − ŷi)2

13

For classification problems, one of the most natural and widely known metrics

is accuracy, defined as the percentage of correct predictions. It is a sufficient basic

metric, though it can be misleading when the number of instances in different classes

are unbalanced. To illustrate this, if the task is finding the diseased people in a

sample where only 1 per cent of the total is ill, then the model which predict all

people to be healthy accuracy will be 99%, which can be very misleading if someone

does not know the database. So it is very important to examine the database and

check more metric. The combination of the following metrics can help one to measure

the goodness of a certain model. Note that for these metrics, the higher the value,

the better the performance.

• Accuracy ∑n
i=1[yi = ŷi]

n

• Precision ∑n
i=1[yi = ŷi = 1]∑n

i=1[ŷi = 1]

• Recall ∑n
i=1[yi = ŷi = 1]∑n

i=1[yi = 1]

• F1 score

2 · precision · recall
precision + recall

Where yi and ŷi are the true and the predicted values, respectively.

3.2.2 N-grams

An n-gram is a contiguous sequence of n characters which appear in a given text.

The n-gram representation of a given text is the set of all n-gram appearing in it.

For extracting n-grams from a text, we usually iterate over the text with a window

of size n and insert all appearing string to the set of representation. In this way,

we have a set of strings instead of a raw text to represent a certain document. This

representation has a hyperparameter n, which indicate the size of the window ergo

the length of strings in the set as well. Naturally, n must be larger than 1, to be an

integer and all text should be consist of at least n characters.

It is important to choose n properly as if we pick n too small, all documents will

appear to be similar to each other, in contract, if we pick it too large, even similar

documents will have a totally different representation. The aim is to choose n large

enough to have the probability of an n-gram occurring in a text low but not too low.

As a result, to choose an optimal window size, one should consider the cardinality

of the character set and the average length of texts in your dataset.

14

For example, if someone pick n to be 1, probably all document will look like to

be identical to each other as all document representation will be, more or less, a set

of the characters from the alphabet. However, if we pick n to be too large, only the

totally identical texts will have similar set representations and then we do not gain

anything with this procedure.

I found n to be optimal when I picked it to be 2 for both the essay and the troll

datasets.

3.2.3 Word2vec

Word2Vec is a relatively new cutting-edge technology which was published in 2013

by Tomáš Mikolov [1]. It is a model that is used to produce word embeddings, with

other words, this model creates a function to map words to a high dimensional vector

space in a way that words appearing frequently in similar contexts will be mapped

close to each other. A context of a word is defined as a certain number of words

before and after the word in a text from the given database. This number is usually

between 5 and 10. The dimensionality of the vector space is usually between 100 and

1000, however, I will use a 300-dimensional model, pre-trained by Google because

it is a computationally expensive process. Finally, as this model is not implemented

by me and the performance of this representation is worse than the n-gram, I will

regard this method as a black box.

3.2.4 MinHash

MinHash is an approximation technique for estimating the Jaccard index of two

sets, where Jaccard index is a similarity measurement of sets, also called intersection

over union [2]. Usually, the sets are represented with a fingerprint of size n, where

n denotes the number of permutations. Generally, if n is larger, the performance is

better but the running time is longer. To choose an optimal permutation number,

one should strike a balance between running time and the probability of a good

approximation.

J(X, Y) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y |+ |X ∩ Y |

The algorithm A basic version of MinHash algorithm assigns a unique number to

each element of the universal set from 0 to n-1 randomly, where n is the cardinality of

the universal set. With other words, it picks a random permutation of the elements

and assigns them their sequential number as their value. As random permutation

is min-wise independent, each element of the universal set is equally likely to be

assigned with the minimum value (0). The minhash value of a given set with a certain

15

permutation is the minimum value which has been assigned to one of the elements of

the set by the random permutation process. The probability of two sets having the

same minhash value is the Jaccard index of them. With more random permutations,

precision can be boosted. Minhash values, produced by different permutations, of

a set can be regarded as a fingerprint. Fingerprints produced this way are able to

represent the sets to estimate their Jaccard indices well with each other. Computing

random permutations on the universal set is usually infeasible and ineffective so

instead of that, an improved version of MinHash uses nearly min-wise independent

hashing to approach the theoretical performance of random permutations.

Set of n-grams When the elements of the sets are strings, we can take advantage

of the wide range of cryptographic hash functions whose aim is to be uniformly

distributed and easily computable. However the below-described algorithm is not

min-wise independent, it still performs well according to others and in my experi-

ments as well. Firstly, we use MD5 or SHA256 functions to map (hash) a string to

an integer, so we can compute a numeric value for each string occurring in the sets.

Next, we simulate random permutations by generating hash functions to map the

values of strings to the set {0, . . . , n− 1} in different ways.

h(x) = (a · x + b) mod n

Where a and b are random integer parameters and n is the cardinality of the universal

set.

Set of vectors When the elements of the sets are m-dimensional vectors and we

do not want to treat these vectors as nominal values but we want to assign the same

values to similar vectors, we can use the following method to produce hash functions

mapping m-dimensional vectors to the set {0, . . . , n− 1}.

h(x) = b(2 · xᵀr

|x| · n
+

n

2
)e mod n

Where r random m-dimensional unit vector and n is the length of the integer range.

3.2.5 LSH

Locality-sensitive hashing (LSH) is a dimensionality reduction technique whose pur-

pose is recommending “candidate pairs” from a set, which pairs are likely to be

similar to each other [2]. In the traditional way, if we want to find the most similar

items in a set of size n, we need to do n2

2
comparison, which is infeasible in case of

large databases. In contrast to that, LSH is linear in the number of items, so with

LSH, we are able to significantly reduce the number of comparisons. Generally, LSH

16

uses special hash functions, corresponding to the type of the objects in the set, to

hash elements into buckets such a way that similar items are in the same bucket

with higher probability than the dissimilar. If two elements are hashed into the same

bucket at least once by one of the hash functions then they will be regarded as a

candidate pair. The next step is not obligatory, however, it can significantly increase

the precision of the model by discarding false positives from the candidate pairs by

checking their real similarity score. So as, probably, there will be false-positives in

the set of candidate pairs, to filter them out, we can check how similar they are in

reality with a corresponding similarity function. If the similarity of a candidate pair

is less than a certain threshold, which also can be a hyperparameter of the model,

then that pair will be discarded.

As in my thesis, the model uses LSH for MinHash fingerprints, henceforth I will

focus on LSH in terms of MinHash. Therefore the items are n-dimensional vectors,

called fingerprints, where n is the permutation number of MinHash. To generate

candidate pairs, LSH splits each fingerprint to band size slices and maps these slices

into the identical bucket (implemented with dictionaries). So basically, two items

will be a candidate pair if they have at least one identical slice. It is important to

mention that, permutation number must be divisible by the band size.

It is crucial to choose band size properly as if it is too small, there will be a lot

of matches and, naturally, more false positives, however, if it is too large, lots of

similar items will not be suggested as a candidate. Thus, to find an optimal band

size, one should strike a balance between too more and too few matches.

3.2.6 Semantic Graph

Semantic Graph is the fantasy name of our publicated method whose purpose is

predicting the scores of previously unseen texts in a supervised manner. This model

uses all the above-described methods to reach its goal, however, it is not just a

combination of them. Firstly, it represents each text with a set of n-grams or a set

of words. Secondly, it computes the fingerprint of each set with the corresponding

version of MinHash. Thirdly, it builds an updateable and queryable LSH model with

the training dataset and queries all candidate pairs having a larger Jaccard index

than a certain threshold. Based on these pairs, it builds an attributed graph, where

the nodes are the instances of the training dataset, and if there is an edge between

two arbitrary nodes, then they are regarded to be similar. Edges of the graph can

be weighted by the Jaccard indices of the fingerprints of the adjacent nodes. For

now, we have a trained model. If we want to predict the score of an arbitrary text,

the model will compute its MinHash fingerprint in the same way as it did with the

training instances. Next, it queries LSH by the fingerprint to get a list of nodes

17

having fingerprints similar to the computed fingerprint. So basically, the model will

do the same process with the test dataset except that it just queries the LSH model

for nodes and does not modify that. So we have a list of nodes whose texts are

likely to be similar to the given text. Optionally, we can expand this list with their

first order neighbourhood so that the impact of scores of nodes which are reachable

multiple times with one additional step will be more significant. Finally, the model

predicts the score of the given text by the (un)weighted average of the scores of the

nodes from the list. If it is a classification problem, this score is a prediction of the

probability of the given text belonging to class 1. We can pick a threshold between

0 and 1 above which the text will be labelled with class 1. If the model can not find

any similar node to a given text, also called unknown node, the score of the text will

be predicted to either the mean of the scores of isolated nodes from training dataset

or None, depending on the hyperparameter.

18

3.3 Project structure

3.3.1 Package diagram

Figure 6: Package diagram

The following diagram describes the relationships of the implemented parts of the

proposed method. As I previously mentioned, Data Science projects usually can

be divided into three important steps. Having grouped the modules in this way,

the first step is preprocessing which consists of transformation and splitting of the

input dataset. TextTransformation is a class, and “Data Splitting” denotes a simple

function which splits the transformed dataset into training and test datasets. The

second step is modelling, including one class out of SemanticGraphRegression and

SemanticGraphClassification classes depending on the type of the chosen task. These

classes use LSH class to find the similar texts in order to build “semantic graph”,

and LSH uses MinHash or MaxHash classes to compute the fingerprints of texts by

some corresponding hash functions which are generated by HashFunctionGenerator

class. The final step is evaluation, therein some corresponding evaluation metrics

show the performance of the trained model on the input dataset.

19

3.3.2 File tree

The following file tree illustrate the physical structure of the project. You can see

from the diagram that, the input datasets are in folder “datasets”, however the

trained Word2Vec model and the list of stopwords are located in a separate folder

“models”. This can help us to distinguish the input datasets from the third-party

datasets and models which are used by our model. In lab folder, the implemented

classes and functions are. “hash.py” consists of HashFunctionGenerator, MinHash,

MaxHash and LSH classes. “metrics.py”

root

RegressionInterface.ipynb

ClassificationInterface.ipynb

datasets

essay data.csv

troll data.csv

models

google vectors.bin

lab

test

init .py

test hash.py

test metrics.py

test semanticgraph.py

test textransformation.py

init .py

hash.py

metrics.py

semanticgraph.py

textransformation.py

stopwords.txt

20

3.3.3 Class diagram

SemanticGraphRegression and LSH classes have overlong parameter lists so some

parameters are not shown in the diagram below. Instead of the missing parameters,

args parameter is shown.

Figure 7: Class diagram

21

3.4 Classes

3.4.1 HashFunctionGenerator

The class purpose is providing an interface for different types of hash functions for

MinHash, MaxHash and LSH classes.

Methods

string_to_num(method=’default ’):

String to number mapping function generator

Arguments

• method {’default’, ’sha256’, ’md5’} – chosen hash function (’default’ =

’sha256’)

Returns

• lambda – hashing strings to integers

vector_to_num(dim=12, bucket_number =100, method=’default ’)

Vector to number mapping function generator

Arguments

• dim {int} – dimension of vector (default: 12)

• bucket number {int} – the cardinality of the generated hash functions’

codomain (default: 100)

• method {’default’, ’dot’} – chosen hash function (’default’ = ’dot’)

Raises

• TypeError – dim must be an integer

• ValueError – dim must be ≥ 1

• TypeError – bucket number must be an integer

• ValueError – bucket number must be ≥ 1

Returns

• lambda – hashing vectors to numbers

22

linear(slope , constant , modulo)

A linear hashing function generator

Arguments

• slope {int} – linear coefficient

• constant {int} – constant term

• modulo {int} – divisor

Raises

• TypeError – slope must be an integer

• TypeError – constant must be an integer

• TypeError – modulo must be an integer

• ValueError – modulo must be ≥ 1

Returns

• lambda – hashing numbers into buckets in the interval

3.4.2 MinHash

The purpose of the class is representing a set with an integer vector, also called

fingerprint, by random hash functions.

Class variables

• num perm – number of permutations

• fingerprint – the computed fingerprint of the bag

• bag – the set of items updated into the MinHash model

Methods

_init__(self , num_perm =128)

Arguments

• num perm {int} – number of permutations (or hash functions) (default: 128)

Raises

• TypeError – num perm must be an integer

23

• ValueError – num perm must be ≥ 1

• ValueError – At least 1 element must be updated by the ”update” method’

(size of bag is 0)

update(self , item)

Update the bag (set) by adding an item to that

Arguments

• item {hashable type} – a new item of the set

compute_fingerprint(self , hash_functions , value_to_num)

Compute fingerprint by the hash functions and the item→number function

Arguments

• hash functions {list} – list of different hash functions for generating finger-

print

• value to num {lambda} – function for representing the items with numbers

or vectors

Raises

• TypeError – hash functions must be a list

• ValueError – the length of hash functions must be equal with the length of

perm num

Returns

• list – fingerprint (integer list of size perm num)

3.4.3 MaxHash

MinHash class with a reversed internal operator, so the model chooses the maximal

values of hash functions on the given set.

3.4.4 LSH

Class variables

• range size – the cardinality of the range of hash functions

• num perm – number of different permutations

• band – length of buckets

24

• domain – type of items (strings or words)

• vector dim – the dimension of word vectors if the domain is words

• fingerprints – dictionary which stores the computed fingerprints by their id

• hash functions – generated hash functions for computing fingerprints

• perm – bucket space for each hash function

Methods

__init__(self , range_size , num_perm =128, band=4, ←↩
value_to_num=’default ’, domain=’strings ’, vector_dim=None)

Set up the environment for Locality-sensitive hashing and generate the correspond-

ing hash functions

Arguments

• range size {int} – range size of hash functions

• num perm {int} – number of different permutations (or hash functions) (de-

fault: 128)

• band {int} – length of buckets (default: 4)

• value to num {’default’, ’sha256’, function} – function for representing the

items with numbers or vectors (’default’ = ’sha256’)

• domain {’words’, ’strings’} – type of items (default: ’strings’)

• vector dim {NoneType, int} - dimension of word vectors if domain is words

Raises

• TypeError – range size must be an integer

• ValueError – range size must be ≥ 1

• TypeError – num perm must be an integer

• ValueError – num perm must be ≥ 1

• TypeError – band must be an integer

• ValueError – band must be ≥ 1

25

• ValueError – num perm must be divisible by band

• TypeError – vector dim must be an integer if domain is words

• ValueError – vector dim must be ≥ 1

insert(self , index , minhash)

Insert a MinHash instance, and map it into the corresponding buckets.

Arguments

• index {hashable type} – unique key for identifying a minhash

• minhash {MinHash} – minhash representation of a set

Raises

• TypeError – index must be hashable

• ValueError – index must be unique

• TypeError – minhash must be an instance a class inherited from MinHash

• TypeError – minhash.num perm must be equal with num perm

query(self , minhash , threshold =0.5, weights=False , ←↩
order=False)

Returns the keys of sets having minhashes similar to the minhash argument at least

with the passed threshold

Arguments

• minhash {MinHash} – MinHash object for searching similar items in the LSH

model

• threshold {float : [0, 1] } – filter out minhashes having less Jaccard indices

with minhash (default: 0.5)

• weights {bool} – should the returning list contains the Jaccard indices of

MinHashes of the chosen keys? (default: False)

• order {bool} – should the keys be ordered by their Jaccard index? (default:

False)

Raises

• TypeError – minhash must be an instance a class inherited from MinHash

26

• TypeError – minhash.num perm must be equal with num perm

• TypeError – the threshold must be a float

• ValueError – the threshold must be from the range [0, 1]

• TypeError – weights must be a bool

• TypeError – order must be a bool

Returns

• list – list of indices of similar items if weights == False

• list – list of (index, similarity) pairs if weights == True

3.4.5 TextTransformation

Class variables

• value – stores the current state of the transformation (it can be string or list

of strings)

Methods

__init__(self , value=’’)

Set up the environment for transformation, and set an initial value for value

Arguments

• value {str, list of str} – string or list of strings for transformation

load_stopwords(self , filename=stopwords , delimiter=’\n’)

Load stopwords for remove stopwords method

Arguments

• filename {str} – the filename of stopwords file (default: ’stopwords.txt’)

• delimiter {str} – delimiter of words in the file (default: ’\n’)

Raises

• TypeError – filename must be an str

• TypeError – delimiter must be an str

Returns

• Self

27

lower(self , value=None)

Convert the text to lowercase

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

upper(self , value=None)

Convert the text to uppercase

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

remove_numbers(self , value=None)

Remove numbers from the text

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

28

remove_whitespaces(self , value=None)

Remove whitespaces from the text

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

remove_punctuation(self , value=None)

Remove punctuation from text

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

remove_stopwords(self , value=None)

Remove stopwords from text. If self .stopwords is None, it calls load stopwords

method with default parameters for loading the list of stopwords.

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

Raises

• TypeError – self.value must be str for this method

Returns

• Self

29

split(self , value=None , separator=’ ’)

Split the string into a list of strings by the separator

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

• separator {str} – separator character or string (default: ’ ’)

Raises

• TypeError – self.value must be an str for this method

Returns

• Self

join(self , value=None , separator=’ ’)

Concatenate text pieces to a text

Arguments

• value {str, list of str, NoneType} – the new list of strings for transformations

(default: None)

• separator {str} – separator character or string (default: ’ ’)

Raises

• TypeError – self.value must be a list or an str for this method

Returns

• Self

ngrams(self , value=None , window =1)

Produce a list of substrings of length ’window’ which occurs in the text

Arguments

• value {str, NoneType} – the new text for transformations (default: None)

• window {int} – the length of substrings (default: 1)

Raises

• TypeError – self.value must be str for this method

• TypeError – window must be an int

• ValueError – window must be ¿= 1

Returns

• Self

30

length(self)

return the length of the value

Returns

• int – length of text or list

3.4.6 SemanticGraphRegression

This class is an implementation of a supervised model for the score prediction of

texts main steps: (1) Build a ’semantic’ graph based on the similarities of texts. (fit

method) (2) Score texts based on the semantic graph (predict method)

Class variables

• text representation – the form to which the texts will be converted (ngrams

or words)

• window size – length of n-grams if text representation is ngrams, otherwise

the average length of the words

• perm num – length of minhash fingerprints

• band – band parameter for LSH (length of buckets)

• threshold – threshold parameter for LSH

• weights – if it is True, the mean of the values of the neighbour nodes will be

weighted by their Jaccard Index

• order – the maximum distance of nodes, in the semantic graph, taking into

consideration when the model predicts the value of a certain instance

• character set – the estimated size of the character set of texts

• unknown prediction – how to predict scores of nodes without neighbours

• word vectors – trained Gensim word2vec model if the text representation is

words

Methods

31

__init__(self , window_size =3, perm_num =128, band=4, ←↩
threshold =0.5, order=1, weights=False , character_set =26, ←↩
text_representation=’ngrams ’, unknown_prediction=’mean’, ←↩
word_vectors=None)

Set the hyperparameters of the model and the trained word vectors if the

text representation is vectors

Arguments

• window size {int} – length of n-grams if text representation is ngrams, oth-

erwise the average length of the words (default: 3)

• perm num {int} – length of minhash fingerprints (default: 128)

• band {int} – band parameter for LSH (length of buckets) (default: 4)

• threshold {float} – threshold parameter for LSH (default: 0.5)

• order {1, 2} – the maximum distance of nodes, in the semantic graph, taking

into consideration when the model predicts the value of a certain instance

(default: 1)

• weights {bool} – if it is True, the mean of the values of the neighbour nodes

will be weighted by their Jaccard Index (default: False)

• text representation {’ngrams’, ’words’} – the form to which the texts will be

converted (default: ’ngrams’)

• character set int – the estimated size of the character set

• unknown prediction ’mean’, None – how to predict scores of nodes without

neighbours (unknowns) (default: ’mean’)

• word vectors {Word2VecKeyedVectors} – trained Gensim word2vec model

(default: None)

Raises

• TypeError – perm num must be an int

• ValueError – perm num must be ≥ 1

• TypeError – band must be an int

• ValueError – band must be ≥ 1

• ValueError – permnum must be divisible by band

32

• TypeError – threshold must be a float

• ValueError – threshold must be ¿= 0 and ¡= 1

• TypeError – order must be an int

• ValueError – order must be 1 or 2

• TypeError – window size must be an int

• ValueError – window size must be ≥ 1

• TypeError – character set must be a int

• ValueError – character set must be ≥ 1

• ValueError – a trained word vector dictionary must be passed if the

text representation is vectors

fit(self , X, y, without_input_check=False)

Train the semantic graph model by example input-output pairs with the initialized

hyperparameters

Arguments

• X {list} – training data, list of texts (strings)

• y {list} – target values (scores), list of floats or integers

• without input check {bool} – should the training data be checked before the

execution or not (default: False)

Raises

• TypeError – without input check must be a bool

• TypeError – X must be a list

• TypeError – y must be a list

• ValueError – lengths of X and y must be the same

• ValueError – lengths of X and y must be ≥ 1

33

predict(self , X, order=1, without_input_check=False)

Predict the scores of texts from the given list

Arguments

• X {list} – list of texts for prediction

• order {1, 2} – how distant neighbours we want to take into account (default:

1)

• without input check {bool} – should the training data be checked before the

execution or not (default: False)

Raises

• TypeError – without input check must be a bool

• TypeError – order must be an int

• TypeError – X must be a list

• ValueError – order must be 1 or 2

Returns

• list – list of predicted scores

3.4.7 SemanticGraphClassification

Binary classifier of texts based on SemanticGraphRegression class.

Methods

predict_proba(self , X, order=1, without_input_check=False)

Predict the probabilities of texts that they are belonging to class 1

Arguments

• X {list} – list of texts for prediction

• order {1, 2} – how distant neighbours we want to take into account (default:

1)

• without input check {bool} – should the training data be checked before the

execution or not (default: False)

Raises

34

• TypeError – without input check must be a bool

• TypeError – order must be an int

• TypeError – X must be a list

• ValueError – order must be 1 or 2

Returns

• list – list of predicted probabilities

predict_proba(self , X, order=1, without_input_check=False)

Predict the classes of texts by calling predictproba method with the corresponding

parameters and a probability threshold.

Arguments

• X {list} – list of texts for prediction

• threshold {float} – the threshold for probability above which a class will be

predicted to be 1.

• order {1, 2} – how distant neighbours we want to take into account (default:

1)

• without input check {bool} – should the training data be checked before the

execution or not (default: False)

Raises

• TypeError – without input check must be a bool

• TypeError – order must be an int

• TypeError – X must be a list

• ValueError – order must be 1 or 2

• TypeError – threshold must be a float

• ValueError – threshold must be picked from the interval [0, 1]

Returns

• list – list of predicted probabilities

35

3.5 Functions

3.5.1 metrics.py

This file provides an interface for the main classification and regression evaluation

metrics

accuracy_score(true_values , predicted_values):

Compute the Accuracy score

Arguments

• true values {list} – correct target values

• predicted values {list} – predicted values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – accuracy score

precision_score(true_values , predicted_values):

Compute the Precision score

Arguments

• true values {list} – correct target values

• predicted values {list} – predicted values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – each item of true values and predicted values must be 0 or 1

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – precision score

36

recall_score(true_values , predicted_values):

Compute the Recall score

Arguments

• true values {list} – correct target values

• predicted values {list} – predicted values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – each item of true values and predicted values must be 0 or 1

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – recall score

f1_score(true_values , predicted_values):

Compute the F1 score

Arguments

• true values {list} – correct target values

• predicted values {list} – predicted values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – each item of true values and predicted values must be 0 or 1

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – F1 score

37

classification_report(true_values , predicted_values):

Compute the most frequent classification metrics and the contingency table and

visualize it

Arguments

• true values {list} – correct target values

• predicted values {list} – predicted values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – each item of true values and predicted values must be 0 or 1

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• tuple – Accuracy, Precision, Recall and F1 scores

mean_absolute_error(true_values , predicted_values):

Compute the Mean Absolute Error (MAE)

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Mean Absolute Error

38

neg_mean_absolute_error(true_values , predicted_values):

Compute the Negative Mean Absolute Error (MAE)

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Negative Mean Absolute Error

mean_squared_error(true_values , predicted_values):

Compute the Mean Squared Error (MSE)

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Mean Squared Error

39

neg_mean_squared_error(true_values , predicted_values):

Compute the Negative Mean Squared Error

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Negative Mean Squared Error

root_mean_squared_error(true_values , predicted_values):

Compute the Root Mean Squared Error (RMSE)

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Root Mean Squared Error

40

neg_root_mean_squared_error(true_values , predicted_values):

Compute the Negative Root Mean Squared Error

Arguments

• true values {list} – correct target values, list of numeric values

• predicted values {list} – predicted values, list of numeric values

Raises

• TypeError – true values must be a list

• TypeError – predicted values must be a list

• ValueError – length of true values and predicted values must be equal

• ValueError – length of true values and predicted values must be ≥ 1

Returns

• float – Negative Root Mean Squared Error

cross_validation_score(model , X, y, ←↩
score_metric=accuracy_score , k=10):

Compute the k-fold cross validation score with the given metric

Arguments

• model callable – The estimator object to use to fit the data

• X list – the data to fit

• y list – the target values

• score metric function – metric to evaluate the model

• k int – the number of groups that the dataset is to be split into

Raises

• TypeError – X must be a list

• TypeError – y must be a list

• ValueError – length of X and y must be equal

• ValueError – length of X and y must be ≥ 1

• TypeError – k must be an int

• ValueError – k must be > 1

Returns

• float – k-fold cross validation score

41

3.6 Testing

3.6.1 Test plan

Software testing is a very essential and important part of software development as

the reliability of programs depends on it, moreover, it helps the programmers to

identifying and fixing bugs in the code before they hand that out. However, it can

be really monotonous to test code if it is done manually. Fortunately, one can make it

automatic by writing scripts to check the correct operation of the independent parts

of the program. These scripts are also called ”unit tests”. The future developments

are also became easier as we can check the effect of an update on the whole code

base immediately with automated tests.

In Data Science, testing can be even better challenging as machine learning

models are usually stochastic processes, and they often suffer from the lack of math-

ematical proofs, plus the results are rather empirical than theoretical. This model

is not different, and therefore, the aim is to do unit tests wherever it is possible to

check anything from the list below:

• the invariant

• the returned value

• the proper exception handling when the input is incorrect.

3.6.2 Unit tests

There are unit tests, organized into the ”lab\test” folder, for each source code from

the lab directory. They are implemented with the support of a popular unit test-

ing framework ”unittest”, which is a standard module in Python. For each method

and function, there are tests for checking the proper exception handling when the

input is incorrect, and with the exception of SemanticGraphRegression and Seman-

ticGraphClassification classes the most important invariant properties and returned

values are also checked. Unfortunately, in the case of the above-mentioned classes,

there is no well defined invariant properties to check.

One can run all unit tests with the following command from the test folder:

python -m unittest

42

3.6.3 Experimental Results

Though the main model (Semantic Graph) can not be tested in the traditional way,

its empirical performance can be expressed by suitable evaluation metrics, in data

science manner.

Classification The experiment was carried out on the dataset ”Tweets Dataset

for Detection of Cyber-Trolls” provided by DataTurks at Kaggle3. The dataset was

split into a training set and a test set in 90:10 proportion.

(a) N-gram representation (b) Word2Vec representation

Regression The experiment was carried out on the essay dataset provided by the

Hewlett Foundation at Kaggle4. The dataset was split into a training set and a test

set in 90:10 proportion.

text repr. MAE MSE RMSE

N-gram 0.32579 0.14229 0.37722

Word2Vec 0.38691 0.22058 0.46966

3https://www.kaggle.com/dataturks/dataset-for-detection-of-cybertrolls
4https://www.kaggle.com/c/asap-sas

43

4 References

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[2] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Finding Similar

Items, page 68–122. Cambridge University Press, 2 edition, 2014.

44

