
Eötvös Loránd University
Faculty of Informatics

Algorithms and Models for Federated
Machine Learning

dr. Tomáš Horváth Gábor Szegedi
Head of Data Science and

Engineering Department at

ELTE

Computer Science MSc

Budapest, 2019.

Acknowledgement

First of all I would like to thank my soon-to-be wife Leona for supporting me

throughout my studies and these past 10 years of my life. In the days when I faced

challenges seemingly impossible to overcome you were there to support me. Thank

you for everything.

I would also like to thank dr. Tomáš Horváth for accepting me into his team and

introducing me to interesting projects, one of which is this thesis itself. I hope I can

participate in many more projects of the department in the future.

Finally a big thanks to Dr. Krisztián Buza for helping overcome technical issues

and Péter Kiss for all the great ideas on how to overcome challenges throughout the

coding of my thesis.

i

CONTENTS

Contents

1 Introduction 1

2 Neural Networks 3

2.1 Core concepts . 3

2.2 Most Common Neural Network Architectures 5

2.2.1 Deep vs Wide Networks . 5

2.2.2 The flow of information in Neural Networks 6

2.3 Training the network . 8

3 Federated Learning 11

3.1 Problem setting . 11

3.2 Industry Solutions . 13

3.3 New approach: Federated Learning 13

3.4 Why would we switch to Federated Learning? 17

3.5 Challenges of Federated Learning . 18

4 Evolutionary Algorithms for Federated Learning 20

4.1 What are Evolutionary Algorithms? 20

4.2 EAs for Neural Networks . 22

4.2.1 Training scope . 23

4.2.2 Encoding . 23

4.3 Federated Neuroevolution . 24

ii

CONTENTS

5 Case Study 26

5.1 The EEG Alcohol Dataset . 26

5.2 Implementation . 29

5.2.1 Setting up a baseline . 30

5.2.2 Federated Neuroevolution Solution 33

5.2.3 Mutation function considerations 36

5.2.4 Federated fitness function . 37

5.2.5 Avoiding overfitting . 37

5.2.6 The main algorithm . 39

5.2.7 Results . 40

6 Conclusion 41

Glossary 46

Acronyms 50

A Source Codes, Text files, Listings 52

B Visualizations 68

iii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

As a big Sci-fi fan and programmer I was always interested in Robotics and Artificial

Intelligence (AI). During my bachelor’s studies this interest grew larger with each

passing semester and each Sci-fi book I read. At the end of my bachelor’s I decided

I would not stop learning and pursue my master’s studies at ELTE in the hopes

of broadening my knowledge about Artificial Intelligence (AI). I wanted to be part

of The AI Revolution [33] to benefit from it and to control it as well to all of our

benefits.

I personally think that the motivation for investing in the field roots from human

laziness. Isaac Asimov has laid this out perfectly in the Foundation Series [3] where

humans create the Positronic Brain that drives the robots of his universe. These

robots do all the hard work and eventually even the thinking instead of humans.

We see more and more materialization of this theory if we carefully look around us.

Autonomous vacuum cleaners, self-driving cars, photo categorization programs have

a common feature: They free us from work that would otherwise be left for us to do.

There is a key difference between man and machine regarding the learning

process. If you show a picture of a Pudú and a Kodkod to a human he will be

able to correctly classify a set of pictures of these animals. This is not the case

with Machine Learning (ML) algorithms however. These algorithms require massive

amounts of example data and lots of iterations of training for the machines to be

1

CHAPTER 1. INTRODUCTION

able to do the same. The boom in Artifical Neural Networks (ANNs) we could see in

these past years is due to the immense growth in processing power and data storage

capabilities. These two factors enable us to effectively train the ANNs these days.

Another driving factor of the recent the AI boom is user generated data. A lot

of services are built upon and improved continually with the data gathered from

users through mobiles or their computer browsers. A good example of this would be

Google Photos [1] which is a service that can automatically label user photos into

categories like cats or dogs. This is achieved after lots of training on data generated

dynamically by the users of the application.

There is a problem however with the current popular training methods. All of

them rely on users uploading their data into the cloud where the services are trained

based on all the data collected from all of the users. There are two issues with this.

The first is that users are giving up some of their Privacy. The second is that the

data can be very big in size so exchanging it could require a lot of network traffic.

An interesting solution to this problem is Federated Learning which comes from

the paper Federated Optimization: Distributed Machine Learning for On-Device

Intelligence [18]. Here the authors propose a training method where the users need

not send their data to the server. Instead, the training of the model is done by the

server sending a version of the model to the users and the users evaluate the model

and send back the Gradients to the server which aggregates these gradients and

updates the model.

In this thesis I propose a new, privacy preserving training methodology called

Federated Neuroevolution which is done via distributively evaluating the Fitness

Function of the utilized Evolutionary Algorithm.

2

CHAPTER 2. NEURAL NETWORKS

Chapter 2

Neural Networks

There are some problems in the real world that are just very hard to grasp and

formulate using standard algorithmic approach. For example, trying to formalize in

code what does a cat look like, or to have an algorithm that separates cat images

from dog images we would most likely fail. But our brains and even the brains of

very simple animals are in fact very good at this sort of pattern recognition. Trying

to understand and simulate them is where the field of Artifical Neural Networks

(ANNs) resides.

2.1 Core concepts

With Artifical Neural Networks we are essentially trying to mimic the inner workings

of the brain in hopes of solving complex problems which would be near impossible

to formulate with a hand crafted Control Flow. 1

1We can not exactly reproduce how the brain works as biologists do not yet have a definitive

answer to that. This is because of technical limitations as even the most precise MRI is not precise

enough to show us the low level mechanisms of the biological brain. So biologists have a top-down

view of the brain whereas we programmers inherently use bottom-up approach when creating an

algorithm.

3

CHAPTER 2. NEURAL NETWORKS

−2 −1 0 1 2

0

1

2

x

f
(x
)

Sigmoid 1
1+e−x

Relu max(0, x)
tanh(x)

Figure 2.1: Non-linear functions used in

ANNs as activation functions

The ANN is a Directed Graph based

on a collection of Artificial Neurons. In

the graph, the nodes are the neurons

and they can have edges between them

in any direction. If a neuron receives

a signal from an incoming edge it can

send out signals on the outward edges.

Each neuron evaluates an activation

function that determines how strong the

activation of the neuron is, and thus how

strong the outgoing signal is. The input

of the activation function is the sum of

inputs to the neuron. The edges have

weights to them that modify the strength of the signals traveling on that edge. These

signals and weights are represented by real numbers. Inside the neuron, there usually

reside some non-linear function that will calculate the output of the neuron (see

figure 2.1 for the most common non-linear functions used as activation functions).

Figure 2.2: A simple ANN topology

The networks are usually following

some kind of structure. The most

common is the layered structure where

multiple neurons are making up a layer

and these layers are stacked on each

other. A neuron in a layered structure

only has incoming edges from neurons

in the layer directly below and outgoing

edges to neurons in the layer directly

above it. In such a layered structure the

first layer is called the input layer where

the stimuli to the network comes in. For example visual data as in each pixel of an

4

CHAPTER 2. NEURAL NETWORKS

image is stimulating a neuron of the input layer. The last layer is called the output

layer which will return the result of the calculations. An example output could be

2 numbers where the numbers refer to the likeliness of the input image depicting a

cat or a dog respectively. The layers between the input layer and the output layer

are called hidden layers. Such architecture can be seen in figure 2.2.

2.2 Most Common Neural Network Architectures

As with any directed graph, ANNs can have many shapes, sizes and structures based

on which we can categorize them. In this section we will review the different aspects

based on which we can categorize the networks.

2.2.1 Deep vs Wide Networks

The networks can be categorized based on the size and number of hidden layers.

We refer to a Neural Network as a Deep Neural Network (DNN) if it has

many2hidden layers between the input layer and the output layer. This is the most

common model used nowadays as it can be trained to recognize patterns with high

precision. Example tasks include Image Classification, Natural Language Processing,

Fraud Detection, etc. An example of a Deep Neural Network can be seen in Figure

2.3.

A Neural Network is considered wide if the hidden layers have a lot more2 neurons

in them than what is usual. A network being wide does not rule out it being deep

as well however it is possible to have just one very wide hidden layer in Neural

Network.
2These terms are not exactly quantified in the industry as these might be relative to the given

application domain.

5

CHAPTER 2. NEURAL NETWORKS

Figure 2.3: A Deep Neural Network topology [2]

2.2.2 The flow of information in Neural Networks

We can categorize ANNs based on the direction of information flow inside them. As

mentioned in 2.1, Neurons communicate with other neurons through signals.

Feedforward Neural Networks

Feedforward neural networks have a key distinguishing property: The graph of

Neurons is a Directed Acyclic Graph (DAG) [37]. The feedforward neural network

was the first and simplest type of artificial neural network created [26]. In this

network, the information moves in only one direction, forward, from the input nodes,

through the hidden nodes (if any) and finally to the output nodes [37]. Both Figures

2.2 and 2.3 are Feedforward networks.

Recurrent Neural Networks

As opposed to Feedforward Networks the Recurrent Neural Networks (RNNs) have

no acyclic constraints. In fact, what makes a Neural Network recurrent is that it

contains cycles in it, called feedback loops. These feedback loops create a unique

mechanism for these network that allows them to maintain information between

inputs. What this means in practice is that a RNN can maintain contextual information,

6

CHAPTER 2. NEURAL NETWORKS

i.e. Recurrent Neural Networks have memory. See an example Recurrent Neural

Network in Figure 2.4.

This memory benefit of RNNs make them fit for solving problems that would be

impossible without knowledge of the context. For example accurately predicting the

next word the user will type requires not only the information about the last word,

but the words before that and, possibly, even the sentiment of the sentences before.

Other application areas include translation between human languages, time series

prediction, speech recognition, motion picture analysis, just to name a few.

Note that Recurrent Neural Networks can be further divided into many different

subcategories but it is out of scope for this thesis to cover them. There is a good

overview of them in the Empirical evaluation of gated recurrent neural networks on

sequence modeling [5].

Figure 2.4: A very simple Recurrent Neural Network topology where we only have 1

input neuron, 1 neuron in the single hidden layer and 1 output neuron (left). Note

the feedback look in the hidden layer which makes this network recurrent. On the

right we can see this loop unfolded. [8]

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of Deep Feedforward

Networks designed based on the Visual Cortex of the human brain in order to mimic

it’s capabilities at understanding visual imagery using computer vision. The input of

7

CHAPTER 2. NEURAL NETWORKS

(a) Input matrix and filter matrix (b) Filtering works with matrix

multiplication

Figure 2.5: Filters example [7]

these networks is usually a 2d image so each neuron in the input layer corresponds

to a pixel of the input image. The output of the network is the same as with any

other network type.

The main innovation of CNNs lies in the hidden layers where we introduce a new

layer type called Convolutional Layer. A Convolutional layer is a set of filters/kernels.

Each filter is a small matrix that represents an elementwise multiplication operation

as depicted in Figure 2.5. During the training phase these matrix values are modified

using the weights to focus on different aspects of the input image like certain shapes

or patterns. See Figure 2.6 for an illustration.

The purpose of these Convolutional Layers is to extract certain features of

the image. With each added convolutional layer we go from simple features like

horizontal or vertical lines to more complex ones like ears and eyes. Based on these

higher level features, the classification can be done in the output layer of the CNN.

2.3 Training the network

Mathematically a Neural Network is a function that renders some output to the

input and can be defined as F : X → Y where X ⊂ Rd is the input and Y ⊂ R is

the output of the network. More specifically f(x) is the network which is built up

from a composition of neurons gi(x). Integrating the activation functions we get the

8

CHAPTER 2. NEURAL NETWORKS

(a) Horizontal Filter (b) Vertical Filter

Figure 2.6: Visual outputs of two filters [16] on an example from the MNIST Data

[34]

f(x) = K(
∑

iwigi(x)) as the Neural Network mathematical formula where w are

the weights of the network and K is an activation function. In this thesis I will only

consider Supervised Learning scenarios where we have a set of example input-output

pairs in the form of {xi, yi}ni=1 where xi ∈ Rd and yi ∈ R while n is the number of

input data points (the size of the data set) at hand.

The training of the neural network is the process during which we achieve a state

of the network’s weights which is considered optimal. Optimality is measured by a

cost or loss function that renders a real number to a function f ∈ Y X . The form of

loss function is C : Y X×Rd → R. A very popular loss function is the Mean Squared

Error which is defined as in equation 2.1

MSE(f) =
1

n

n∑
i=1

(f(xi)− yi)2 (2.1)

Before the training process can start, we need to initialize the weights. This is

usually done by randomizing the weights to some small non-zero numbers.

During the training, in each iteration we evaluate the current fi network using

our loss function. This will indicate how far is fi from the optimal state. The problem

is how do we determine fi+1 so that MSE(fi) > MSE(fi+1).

For this we have a family of methods called Backpropagation. These methods

calculate the gradient of the loss function and modify the weights based on that.

One of these methods is Stohastic Gradient Descent (SGD) which is formalized as

9

CHAPTER 2. NEURAL NETWORKS

wij(t+ 1) = wij(t)− η
∂C

∂wij

(2.2)

where η is the learning rate, C is the cost (loss) function.

We have many optimization methods that are based on the gradient descent

trick of backpropagation. Stohastic Gradient Descent updates the weights after each

training example. The loss function will be fluctuating quite heavily because of this.

Reviewing all the different, currently used optimization techniques is outside of the

scope of this thesis. For those interested I recommend checking An overview of

gradient descent optimization algorithms by Sebastian Ruder [24].

10

CHAPTER 3. FEDERATED LEARNING

Chapter 3

Federated Learning

In October 2016, Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter

Richtárik published Federated Optimization: Distributed Machine Learning for On-Device

Intelligence [18], where they introduced the concept of Federated Learning. Because

this thesis is largely built upon the ideas introduced in their publication, I will

summarize their article in this chapter.

3.1 Problem setting

When we are talking about Machine Learning problems we usually refer to a mathematical

function that can approximate a problem defined with input-output pairs after

setting the correct weights of the function. Usually we have a set of input-output

pairs {xi, yi}ni=1 where xi ∈ Rd and yi ∈ R. Based on a loss function we can iteratively

approximate the original f by computing our fi loss function. Formally, the function

we are searching for looks like

min
w∈Rd

f(w) where f(w) =
1

n

n∑
i=1

fi(w) (3.1)

As an example, in the case of the famous MNIST Dataset [34], all of the xi is

a greyscale image of size 28x28 (xi ∈ R28×28). The output yi is a vector signaling

which digit it is on the image (yi ∈ R10). The dataset contains 70000 images in total,

11

CHAPTER 3. FEDERATED LEARNING

so n = 70000. We can simply download the data and build a Convolutional Neural

Network (CNN) (as explained in 2.2.2) to solve this classification problem.

Solving such problems has undergone heavy research in the past decades and is

quite well understood now. However, in a lot of the industry settings the problems

are not that simple. The data is often very fragmented and heavily distributed.

Users generate a lot of data with their mobile phones and gathering the data from

all of them to build a model on them is impossible in most cases as we can’t fit this

amount of data into a single computer.

Even if users could upload the data to a server, the concern of privacy is raised. In

recent years, there are more and more so-called Privacy Aware users who no longer

want their data being sent to and stored at a cloud.

A naive idea would be to train the models on the nodes themselves, where the

data is. The problem with this is twofold. The first problem is that a node may

not contain all the kinds of data we want to handle in our model. For example a

dog person would only have photos of his/her dog so we could not build a model of

classifying dogs versus cats relying on his phone alone. The second problem is that

data volume may vary heavily from node to node. For example, a less active user

does not have much data that can be of use. The above explained properties we will

call Federated Properties and can be summarized as in the list below.

• Massively Distributed Data points are stored across a large number of

nodes K. In particular, the number of nodes can be much bigger than the

average number of training examples stored on a single node (n/K).

• Non-IID Data on each node may be drawn from a different distribution; that

is, the data points available locally are far from being a representative sample

of the overall distribution.

• Unbalanced Different nodes may vary by orders of magnitude in the number

of training examples they hold.

12

CHAPTER 3. FEDERATED LEARNING

3.2 Industry Solutions

The usual answer to this problem in the industry is to collect the data from the

users - however costly this may be - and solve the problem in a centralized location

where it could be shuffled and distributed evenly over proprietary compute nodes.

Such distribution could be handled using Spark [35] by evenly distributing data to

the nodes and run the single core baseline algorithms over the nodes. This, however,

is a very hard constraint and does not conform with the Federated Properties so a

heavy data lifting step is required as pre-processing.

Another good solution to the distributed calculation is the CoCoA+ framework,

which require minimal changes for distributed calculation compared to the single

node version and can use any single node base algorithm to be distributed among

the nodes [21] [28]. With CoCoA+ the data can be provided to the framework as-is,

so the data preprocessing step can be spared. The downside of CoCoA+ is that it is

constrained to the dual form of the optimization problems where yi ∈ {−1, 1} and

the algorithm converges very slowly.

Both of these solutions have in common the need for synchronization in each

iteration. This is due to aggregation of partial results from the nodes needed at each

iteration step. This is a hard constraint and has a significant impact on the overall

performance of the system.

3.3 New approach: Federated Learning

Federated Learning or Federated Optimization is a new kind of Distributed Optimization

where users or nodes do not send the data they generate to the server, but rather

provide part of their computational power to be used to solve the optimization

problem. It’s purpose is to efficiently solve Machine Learning problems wich have

Federated Properties.

The Algorithm proposed in the original paper [18] is a modified version of the

Stochastic Variance Reduced Gradient (SVRG) [15, 19] algorithm which itself is

13

CHAPTER 3. FEDERATED LEARNING

based on the widely acknowledged Stohastic Gradient Descent (SGD) explained in

the section 2.3. Let us first examine the original SVRG algorithm, described in

Algorithm 1. There are some common variables we will be using in these algorithms

that are listed in the below list.

• n — the number of data points / training samples

• nj = |{i ∈ 1, ..., n : xij 6= 0}| — the number of data points with nonzero jth

coordinate

• φj = nj/n — frequency of appearance of nonzero elements in jth coordinate

Algorithm 1 SVRG
1: procedure SVRG(m,h) . m number of stochastic steps per epoch, h the step

size

2: Initialize wt randomly

3: for s = 0, 1, 2, ... do

4: Compute and store ∇f(wt) = 1
n

∑n
i=1∇fi(wt)

5: w = wt . wt is randomly initialized

6: for t = 1 to m do

7: Pick i ∈ {1, 2, ...n}, uniformly at random

8: w = w − h(∇fi(w)−∇fi(wt) +∇f(wt))

9: end for

10: wt+1 = w

11: end for

12: end procedure

The modified version is called Federated Stochastic Variance Reduced Gradient

(FSVRG) and can be examined in Algorithm 2. To understand it, we need a few

new variables such that:

• K — the number of nodes

14

CHAPTER 3. FEDERATED LEARNING

• Pk — set of indices, corresponding to data points stored on device k

• nk = |Pk| — the number of data points on node k

• nj
k = |{i ∈ Pk : xij 6= 0}| — the number of data points stored on node k with

nonzero jth coordinate

• φj
k = nj

k/nk — frequency of appearance of nonzero elements in jth coordinate

on node k

• sjk = φj/φj
k — ratio of global and local appearance frequencies on node k in

jth coordinate

• Sk = Diag(sjk) — diagonal matrix, composed of sjk as jth diagonal element

• ωj = |{Pk : n
j
k 6= 0}|— Number of nodes that contain data point with nonzero

jth coordinate

• aj = K/ωj — aggregation parameter for coordinate j

• A = Diag(aj) — diagonal matrix composed of aj as jth diagonal element

Now let’s explore a bit more on why this algorithm works well in the federated

setting. Below is a list of some key points of the algorithm:

1. Introduced local step size (hk = h/nk) One of the key problems I named in

section 3.1 was that the distribution of data between the nodes can be heavily

Unbalanced. We can clearly see that if a node has thousands of data points

we require smaller step size in each iteration of data point than for a node

where we have only a few data points. The local step size helps us to even out

the data size differences and achieve roughly the same magnitude of weight

progress on each node regardless of nk.

15

CHAPTER 3. FEDERATED LEARNING

Algorithm 2 FSVRG
1: procedure FSVRG(step size h, data partition {Pk}Kk=1,

diagonal matrices A, Sk ∈ Rd×d for k ∈ {1, ..., K})

2: for s = 0, 1, 2, ... do . Overall iterations

3: Compute ∇f(wt) = 1
n

∑n
i=1∇fi(wt)

4: for all k = 1 to K do in parallel over nodes k . Distributed loop

5: Initialize: wk = wt and hk = h/nk

6: Pick i ∈ {1, 2, ...n}, uniformly at random

7: Let {it}nk
t=1 be random permutation of Pk

8: for t = 1, ..., nk do . Actual update loop

9: wk = wk − hk(Sk[∇fit(wk)−∇fit(wt)] +∇f(wt))

10: end for

11: end for

12: wt+1 = wt + A
∑K

k=1
nk

n
(wk − wt)

13: end for

14: end procedure

16

CHAPTER 3. FEDERATED LEARNING

2. Aggregation of updates proportional to partition sizes (nk

n
(wk − wt))

Intuitively we can understand that an update coming from a node with thousands

of data points should have a bigger weight than an update coming from a node

with only a few data points. Aggregating weight updated with respect to the

size of nk compared to n solves this issue.

3. Scaling stochastic gradients by diagonal matrix Sk In our problem

setting (section 3.1) I said that the data could be distributed so that a node

does not have an IID local portion of the data. Imagine a scenario where one

user has thousands of images of a dog, but none from the other class of the cats.

In such scenario, this node should not have a large impact on the gradients of

the network that are related to cat classification. This point does that exactly

through scaling the weight updates on the node in accordance with the node’s

data distribution.

4. Per-coordinate scaling of aggregated updates A(wk − wt) This scaling

goes hand in hand with Point 3. In Point 3, we scale down the updates

for classes the node does not have on the client side. In Point 4, when we

aggregate on the server side we scale the values of nodes according to their

class distribution.

3.4 Why would we switch to Federated Learning?

Federated Learning certainly requires the adoption of new viewpoints which requires

time and effort from the industry that is already used to the solutions discussed in

Section 3.2. These solutions have been working well for the industry so why should

they change?

One reason to change is that users are becoming more and more aware of their

privacy with each privacy related scandal. This created a new environment in which

tech companies focused on privacy have an existing and emerging user demand to

supply for.

17

CHAPTER 3. FEDERATED LEARNING

A good example of this is that at the Google I/O 2019 conference a lot of the

emphasis was on distributed Machine Learning. Google CEO Sundar Pichai said

that “Gboard is already using federated learning to improve next-word prediction”

and Google’s Senior Director of Android, Stephanie Cuthbertso said that “On-device

machine learning powers everything from these incredible breakthroughs like Live

Captions to helpful everyday features like Smart Reply. And it does this with no

user input ever leaving the phone, all of which protects user privacy” [6].

Another driving factor could be to decrease the investment required in centralized

computational power. This seems reasonable as data is ever growing and the user’s

phones are idle at most of the time which makes their utilization really poor.

The final driving factor could be political pressure. There could come a time

when countries start regulating the privacy requirements of software. If such political

changes ever come, Federated Learning will be there in our toolbox to conform with

the new regulations.

3.5 Challenges of Federated Learning

Federated Learning is a new area and with every new field of research there is still

room for improvement. The below list gives a summary of key weaknesses that are

identified by the authors of Federated Learning [18].

1. The proposed algorithm is synchronous and each iteration of the global model

requires synchronization with all the nodes. This is the main performance

bottleneck of the algorithm as per node wait times can vary heavily based on

the amount of data available on the node and the computational power of the

node. An Asynchronous research on Federated Learning would be desirable.

2. For non-convex problems like Neural Networks there are no convergence guarantees

of the FSVRG algorithm.

3. There is still some privacy leaked from the nodes through the gradients and the

18

CHAPTER 3. FEDERATED LEARNING

per node class meta data. Both of these are essential for the FSVRG algorithm

despite these still giving away some part of the user’s privacy.

4. With the FSVRG algorithm we are building a global model. This is good in

general but we could improve user experience if the model was biased towards

the user’s local data. This is certainly an improvement that could be done for

users with big amount of local data.

19

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

Chapter 4

Evolutionary Algorithms for

Federated Learning

As discussed in 3.4 there is still some privacy related concerns with the FSVRG

algorithm, described in algorithm 2. The proposed algorithm exposes class distribution

of the nodes and the gradients also contain some information about the actual data

on the nodes [18]. In this thesis, I propose a new method for Federated Learning

that is completely different from FSVRG but still solves the problem introduced in

the section 3.1.

The method I suggest is a modified Evolutionary Algorithm (EA). As we will

see, these algorithms do not require any knowledge about the data they are being

tested on as, in general, an EA can handle the data as a black box. This eliminates

the need to know about data distribution on the node as well as gradients are no

longer needed either.

4.1 What are Evolutionary Algorithms?

First let us discuss what are Evolutionary Algorithms (EAs). Back in chapter 2, I

mentioned that Artifical Neural Networks are based on nature itself. However, as we

have seen in section 2.3, we have constructed our own methodology for training the

20

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

network that could be different than how the biological neural networks are trained

in living beings.

With Evolutionary Algorithms the programming community has yet again reached

out to concepts that we have observed in nature. Evolutionary Algorithms belong to

the family of Evolutionary Computation in which we use heuristics and stochastic

processes for global optimization.

Evolutionary Algorithms are based on terms we know from Darwinian Evolution.

The main terms in biology are fitness, selection, reproduction and mutation. These

have very similar names and definitions in our field which are fully explained in the

following list:

• Individual An individual is an instance of the solution to the problem that we

are trying to optimize. Individuals are problem specific. An individual could

be for example a vector of values each representing a hyperparameter of a

training algorithm, or the weights of an ANN.

• Population A list of individuals

• Generation The population of a specific iteration of the algorithm

• Fitness A real number indicating the goodness of an individual

• Selection The process of selecting the best individuals of a generation to for

reproduction

• Crossover The reproduction process during which we create new individuals

- called offsprings - by some form of mixing of selected parents

• Mutation The process of randomly changing the offsprings

The most basic form of EA is explained using pseudocode in Algorithm 3. The

power of the algorithm is that it is very generic and can be used for solving any

optimization problem. To apply to a specific problem we only need to define the

representation of our individuals and the functions for operating on them.

21

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

Algorithm 3 Evolutionary Algorithm
1: create population P randomly

2: n = |P|

3: while ¬ fitness_goal_is_met(P) do

4: {fi}ni=1 = {fitness(Pi)}ni=1 . Evaluate fitness of population

5: parents = best_individuals(P , f) . select the best individuals for breeding

6: offsprings = crossover(parents) . the newly bred individuals

7: for offspring in offsprings do . Mutate the offsprings

8: offspring = mutate(offspring)

9: end for

10: P = parents ∪ offsprings

11: end while

4.2 EAs for Neural Networks

Neuroevolution (NE) is a form of artificial intelligence that uses evolutionary algorithms

to optimize the parameters and topology of Artifical Neural Networks (ANNs) [30].

There are certain situations where input-output pairs are not available for training

a network using gradient based techniques. Neuroevolution excels in these situations

because the Evolutionary Algorithm’s fitness function is so generic it can be applied

in a lot more cases. Such fields include but not limited to are Evolutionary Robotics,

Artificial life and General game playing.

One very famous example of the application of Neuroevolution is an AI developed

by Sethbing where he uses NE to train a network that can beat Mario [27]. This is a

perfect example of Neuroevolution where gradient based methods are not accessible

as we do not have training data. The fitness function here was simply measuring

how far did the agent get in the level.

Neuroevolution has many implementations which differ in key features. In the

following sections we will review these traits.

22

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

4.2.1 Training scope

In the classic gradient based learning we have a fixed network topology where we

are only adjusting the weights of the network using backpropagation, as can be seen

in the section 2.3.

In the case of Conventional Neuroevolution we are learning the weights of an

ANN using Evolutionary Algorithm and not modifying the topology. The problem

with this is that without gradients we do not know the slope so the learning is very

stochastic. The benefit of Conventional Neuroevolution, however, is that it can avoid

being stuck in local minimums with the right Hyperparameters. Such an algorithm

is called Neuro-genetic evolution by E. Ronald [23].

Another class of Neuroevolution algorithms are Topology and Weight Evolving

Artificial Neural Network algorithms (TWEANNs). These algorithms not only optimize

the weights of ANNs but also adjust the network topology. This is the main reason

for existence of Neuroevolution as this is something that can not be done with

regular training methods. The two most famous TWEANNs are NeuroEvolution of

Augmenting Topologies (NEAT) [31] and Hypercube-based NeuroEvolution of Augmenting

Topologies (HyperNEAT) [10].

4.2.2 Encoding

Another dividing aspect of Neuroevolution algorithms is the way they encode information

about the ANNs, as introduced in the following paragraphs.

Direct Encoding

Direct Encoding is the trivial way of storing network information: we directly store

the full network topology and all of the weights in each individual of the population.

The issue with this is that the problem space grows very fast as we scale up the

network (which we need if we want to solve complex problems).

23

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

Indirect Encoding

The solution to the scaling problem of Direct Encoding can be solved with Indirect

Encoding. The way to handle this problem is to compress the information and only

store part of it or generative information about it. In this case each individual only

stores information about how to generate the network.

It is possible to store only the network topology in the genetic information.

The fitness function in this case can calculate some metrics for the individual after

training for some epoch using a regular gradient based learning method.

It is also possible to store compressed information about the weights like it is

done in HyperNEAT [10].

4.3 Federated Neuroevolution

In this section I propose a solution on how to use Neuroevolution to solve the

Federated Learning problem described in the section 3.1. In short, the main idea of

this algorithm is that the server generates a new generation of models and sends

these to all the clients. The clients evaluate the fitness of each model and send it

back to the server for aggregation. The server then generates a new generation of

models and the loop starts again.

To use Neuroevolution in a Federated setting, we need not modify the base

Evolutionary Algorithm extensively. The only point where we need to interfere is at

line 4 of Algorithm 3. The fitness function acts as a black box from the perspective

of the main algorithm so no other change is needed. The proposed fitness function

is described in Algorithm 4.

We will define a distributed fitness function that sends the models to the nodes.

The nodes locally evaluate the models and send back their fitness values as measured

on local data. Of course, this can be done parallel on all the nodes.

Because of the Non-IID and Unbalanced properties of the node data distribution

I am not considering indirect encoding options, as optimization done on the node

24

CHAPTER 4. EVOLUTIONARY ALGORITHMS FOR FEDERATED
LEARNING

could diverge the model heavily due to local data properties. With direct encoding

we are keeping a strong control of the evolution on the server side, thus, clients can

not overfit the models too much. The drawback of the direct encoding is the larger

search space. Because of this, we will only be learning weights of the network and

not its topology.

Algorithm 4 Federated Fitness
1: procedure Federated_Fitness(nodes {Nk}Kk=1, population of models P)

2: n = |P|

3: for all k = 1 to K do in parallel over nodes k . Distributed loop

4: {fk
i }ni=1 = {fitness(Pi)}ni=1 . Evaluate fitness of population on node k

5: nk = |Nk| . Get the number of training examples of the node

6: end for

7: {fi}ni=1 = {
∑K

j=1 n
j∗fj

i∑K
j=1 n

j
} . Get a weighted average of the node level fitnesses

8: return f

9: end procedure

25

CHAPTER 5. CASE STUDY

Chapter 5

Case Study

In this chapter, I will show how the theory behind Federated Neuroevolution is

capable of solving a problem through a case study.

5.1 The EEG Alcohol Dataset

As Federated Learning is a relatively new concept, thus, there are no datasets

publicly available that are already split into nodes. The original paper also didn’t

have such a dataset, but created one by splitting a dataset into virtual nodes based

on users posting on Google+ [18]. The splitting was done such that each user

represented a node.

The dataset I have used is the EEG Database Data Set [4]. The dataset contains

120 Electroencephalography (EEG) trial data about 122 patients who either belong

to the alcoholic or to the control group. In each trial the patients were shown 1

or 2 image of the Snodgrass and Vanderwart picture set [29]. After showing them

the stimuli, their brain activation was measured for 1 second on 64 points at 256

Hertz. A trial contains the following data (an example trial data can be seen in the

Appendix 1):

26

CHAPTER 5. CASE STUDY

Figure 5.1: EEG Points of measurements on the scalp [17]

• Stimulus type Can be one of the following: S1, S2 match, S2 nomatch. S1

means that only 1 image were shown. S2 match means that 2 images were

shown of the same class, S2 nomatch means that 2 images were shown from

different classes.

• Trial number The number of the trial

• Measurement data Measurement data contains the place of sensor on the

scalp, the relative time of measurement and the measured value by the sensor

in microvolts.

The dataset itself is very fascinating. It raises the question: Does alcoholism

effect brain functionality and, if so, then is it visible in EEG? Before we use machine

learning to answer that let us take a look at the data, shown in figures 5.2 and 5.3,

to get some intuition. Based on these images we can assume that there is indeed a

connection between alcoholism and brain functionality and that this can be observed

through EEG.

I think this dataset makes a good candidate for Federated Learning. Let’s assume

27

CHAPTER 5. CASE STUDY

(a) Alcoholic (b) Control

Figure 5.2: Average of 10 trial results for single image stimulus. [4]

(a) Alcoholic (b) Control

Figure 5.3: Randomly selected trial of single image stimulus. [17]

28

CHAPTER 5. CASE STUDY

that this data is hard to come by, and a lot of hospitals have only a few EEG samples

from a handful of patients. The hospitals could not train a model based on their

small local dataset but combined globally they could form a large enough dataset for

training. Also due to GDPR and other regulations regarding medical data it is quite

likely that the hospitals are legally prohibited from sharing the medical data with

any third party. This is where Federated Learning comes in as a possible solution.

So in my setting the hospitals are the nodes and the data is randomly distributed

between them so that all three Federated Properties, listed in section 3.1, are met.

See Appendix B.1 for a visualization of the data distribution used for training.

5.2 Implementation

The entire source code related to the thesis can be found on Github1.

With the Machine Learning boom of recent years came new code libraries to

provide reusable code to the community. These libraries were mostly written in

Python as it is a very easy to learn and concise language that is even appealing to

people not from a software background. By this time Python has become the de

facto ML language so I have used Python3 for the coding part of my thesis.

There are a lot of libraries for ML in Python for data manipulation, machine

learning, neural networks and data visualization that we can use. For the exact

libraries I used please refer to Table 5.1.
1 https://github.com/VSZM/FederatedNeuroevolution/releases/tag/mscthesis

29

https://github.com/VSZM/FederatedNeuroevolution/releases/tag/mscthesis

CHAPTER 5. CASE STUDY

Library Description

Numpy2 Providing math support functions. Especially strong in matrix

representation and manipulation.

Tensorflow 3 A library for creating and training Neural Networks on GPUs.

Keras 4 Simple interface for creating and training Neural Networks using

Tensorflow, CNTK or Theano as the underlying backend.

scikit-learn 5 Providing all kinds of Machine Learning in classification, regression,

clustering, preprocessing.

seaborn 6 High level Data Visualization library built on top of matplotlib.

pandas 7 Data analysis tool.

Table 5.1: Most relevant libraries used for the case study

5.2.1 Setting up a baseline

To measure the performance of a new methodology we need to setup a baseline

to refer to. I have created a model on a single node as a baseline to compare my

method’s performance against it.

Looking at the visualization of EEG data at Figures 5.2 and 5.3, we can see that

if we are to represent the measurements in a 2d heatmap image we could clearly

distinguish the two classes from one another. Convolutional Neural Networks are

good at classifying images so I have chosen to build a CNN for this problem.

After checking the related research in EEG data classification, I have found that

others have successfully used CNNs in this field. The most useful information I

learned was that Convolutional Filters should be defined so that each electrode is
2https://www.numpy.org/
3https://www.tensorflow.org/
4https://keras.io/
5https://scikit-learn.org/stable/
6https://seaborn.pydata.org/
7https://pandas.pydata.org/

30

https://www.numpy.org/

CHAPTER 5. CASE STUDY

Figure 5.4: Reference network for EEG data classification [25]. Note the kernel size

of the first layer where each electrode is handled separately.

31

CHAPTER 5. CASE STUDY

measured separately [25]. A reference network that does this can be seen at Figure

5.4.

In my implementation, I first had to do some pre-processing where I read in the

textual data of the EEG measurements. As I mentioned in Section 5.1, there are

64 electrodes on the scalp and each of them do 256 measurements over 1 second.

This results in a 64 × 256 matrix where each matrix element is a measurement in

microvolts.

The CNN I created has 3 Convolutional layers so it can be considered shallow.

After the first 2 convolutional layers there is a pooling layer and then comes the 3rd

convolutional layer. I inserted 1 batch normalization layer to avoid overfitting and

speed up the learning. The activation function I use is sigmoid. I used the Adadelta

optimizer [36] which has adaptive learning rate. The loss function I use is Categorical

Cross-Entropy [11].

The keras code for the network configuration can be seen in Appendix 2 and the

network topology summary can be seen in Appendix 3.

The training took 100 epochs and the results are quite satisfying with a maximum

validation accuracy of 95%, as can be seen in the figure 5.5.

32

CHAPTER 5. CASE STUDY

(a) Training accuracy over 100 epoch

(b) Validation accuracy over 100 epoch

Figure 5.5: Accuracy during baseline training

5.2.2 Federated Neuroevolution Solution

Despite Neuroevolution has been around for more than 2 decades, we do not see

any widely used, mature, libraries that would help implementing it. This could be

because of Evolutionary Algorithms are so generic that most of the implementation

is problem specific and the reusable part is not much hard to implement.

Before creating my own implementation, I looked around to see how others

implemented Neuroevolution so far. My initial approach was based on an article

I found on “Towards Data Science” [9] which I had to modify extensively in order to

work with this problem domain.

Below I go over the implementation in details and what led me to implement

Algorithm 3 the way I did it.

33

CHAPTER 5. CASE STUDY

Crossover function considerations

One of the most important part of the Evolutionary Algorithm is the creation of

offsprings in each iteration. The two main aspects to consider is how many parents

should take part in a single crossover and how do we implement the crossover of

selected parents.

We can consider choosing multiple parents for the offsprings but the usual way

to do is to chose just two parents for each offspring. I also only choose two parents

randomly from the pool of parents to produce the required offspring amount. The

pool of parents is created by sorting the current generation’s models based on their

fitness and selecting the n− 1 fittest models for crossover. The last parent selected

for mating is not among the fittest ones, but chosen randomly from the rest, to

add more variance. The amount of parents selected for crossover and the pool size

is driven by hyper-parameters of the algorithm that can be found in Appendix 4

denoted by num_parents_mating and population_size, respectively.

After choosing the parents for crossover, we need to do the actual crossover. This

can be done in many different ways depending on our model representation. Below is

a list of different crossover approaches I considered during my thesis. The first three

require us to convert the Artifical Neural Network’s layered matrix structure into

a flat vector of values. These first three approaches are rather popular in Genetic

Algorithms.

• Halving mix: In this approach, the vector of values from the parents are taken

to create the offspring vector by taking the first half of it from the first parent

and the second half from the second parent. This was the original approach in

[9]. Formally:

{offspringi}ni=1 =

ai, if i <= n/2

bi, if i > n/2

(5.1)

where n is the length of the model vectors and a = (a1, a2, . . . , an), b =

34

CHAPTER 5. CASE STUDY

(b1, b2, . . . , bn) are the parent vectors.

• Interleave mix: In this approach, the vector of values from the parents are

taken to create the offspring vector by interleaving the two parent vectors.

Formally:

{offspringi}ni=1 =

ai, if i mod 2 = 0

bi, if i mod 2 = 1

(5.2)

where n is the length of the model vectors and a,b are the parent vectors.

• Mean mix: In this approach, the vector of values from the parents are taken

to create the offspring vector by taking the mean of the two parent vectors at

each index. Formally:

{offspringi}ni=1 = {
ai + bi

2
} (5.3)

where n is the length of the model vectors and a,b are the parent vectors.

• Kernelwise mix: This is the only approach where the layered network structure

is not modified. In fact, this one builds on the layered structure of the network.

In each layer there are multiple kernels/filters that hold key pattern information.

These information portions are kept intact during crossover. The offspring

model is created by randomly mixing the kernels inside each layer. See kernelwise

mix implemented in Appendix 5.

My initial experiments did not converge using the first three crossover methods.

This could be because these approaches are very low level and do not care about

the network structure or the patterns learned in the kernels.

Kernelwise mixing is a higher level approach, I invented on my own, after taking

a look at how genetics work in nature. In nature, the heredity is also a higher level

35

CHAPTER 5. CASE STUDY

mixing of genes8, instead of low level mix of organic molecules. Thus, traits of the

parents are kept intact. The resemblance to genetics can be summarized as follows:

the DNA is the network’s weights, a gene is a filter and an organic molecule is a

float value.

With kernelwise mixing the evolutionary training was converging so I chose this

approach.

5.2.3 Mutation function considerations

As the initial population is fully randomized, crossover is not enough guarantee for

convergence. Just like in nature, we need mutation. The problem with mutation is

that - just like in nature - it is not a heuristic approach, so changes are random by

design, meaning that the outcome can either be good or bad from our point of view.

We first need to decide the number of mutated values and the scale of the

mutation on these values. The former will be controlled by a probabilistic value

determining the chance of mutation for each value in the model. The latter is a

float value determining how much is the impact on each mutating value. These are,

again, driven by hyper-parameters of the algorithm that can be found in Appendix

4 denoted by mutation_chance and mutation_rate, respectively.

There are the following two main approaches I saw for mutating values in a

network:

• Mutate by offset [9]: Here we add a random value to the selected values. In

my implementation, the offset was a random value between

[−mutation_rate,mutation_rate].

• Mutate by multiplication [22]: Here we multiply the selected values with a

random value. In my implementation, the multiplication factor was a random

value between [100−mutation_rate

100
, 100+mutation_rate

100
].

8A gene is a region of DNA that encodes a trait or a function

36

CHAPTER 5. CASE STUDY

After experimenting, I found lot better convergence rate with the second approach,

so I chose that one. The python code implementation can be found in Appendix 6.

5.2.4 Federated fitness function

The Federated fitness function is almost the same as I have laid out in Algorithm 4.

Indeed, it needs an actual fitness function that can calculate the node level fitness

which was abstracted in Algorithm 4. For this, I have chosen Negative Mean Squared

Error which can be written as in the Equation 5.4. The reason for the negating is

that the core algorithm is searching for max values when determining which is the

fittest individual of a population. The related source code can be seen in Appendix

7.

NMSE(f) = −1 ∗MSE(f) (5.4)

where MSE is introduced in Equation 2.1.

Of course, to run Federated calculations, we need to separate the data to nodes.

I have spared the technicalities of creating physical nodes and distributing the data,

so I have created the Node class as an abstraction. The Node class implementation

can be found in Appendix 8.

5.2.5 Avoiding overfitting

During my initial runs, where I could achieve convergence, I realized that I did

not keep over-fitting in mind. Of course, as with any Supervised Machine Learning

technique, the Evolutionary Algorithm is also capable of over-fitting on the training

data if we are not careful.

Avoiding this has been studied in Evolutionary Algorithms as well [14, 20, 13,

12]. The main idea is that we must not include the entire training set in the whole

duration of the training. Instead, what most articles propose, is to use subsets of

the training data in each generation. The training subset can be changed every

37

CHAPTER 5. CASE STUDY

generation or kept intact for a few generations. Studies interestingly show that

randomly selecting a single training sample is also very effective both for convergence

and avoiding over-fitting. Another suggested tweak is to include the full dataset every

once in a while.

Because our setting is a Federated setting, we cannot directly apply these techniques.

The problems are that the data is distributed on a multitude of nodes, and, not

only is it distributed but is also (most probably) unbalanced. Because we are taking

privacy into consideration we want to know as little about the client data on the

server as possible. This means that we ideally shouldn’t tell the clients which data

samples to include in the current generation.

This has led me to the conclusion to do the subset selection at a higher level and

treat the nodes as data samples. So, in each generation, the Federated Neuroevolution

algorithm selects a subset of the nodes for evaluating the fitness of the current

generation. This subset selection is done by iterators at a code level. In my experiments,

I have tried the following three approaches:

1. Random single element for each generation: Here, I select randomly a

node in each generation and ask the node to evaluate the population’s fitness

on a randomly selected single training sample of it’s own. In my experiments,

the training did not converge at all with this method.

2. Random subset for each generation: Here, I randomly select a subset

of the nodes and send the models only to them for evaluation on their full

training set. I re-randomize the subset every n generations. In my experiments

this was the best approach for Federated Neuroevolution.

3. Moving window subset for each generation: Here, I first order the nodes

and then select a slice of the list of nodes. This is the window and in every n

generation I move the window to the right by 1. The list is a cyclic list so if I

run out of indices I start over at the beginning. In experiments, the training

convergence was slower with this method than in the case of the second method

38

CHAPTER 5. CASE STUDY

and the convergence also capped around 75% validation accuracy.

The second and third approach both require two parameters: The subset size and

the change interval driven by hyper-parameters of the algorithm that can be found in

Appendix 4 denoted by node_activation_ratio and node_subset_change_interval,

respectively.

The second approach of randomly selecting a subset of nodes had the best

performance. I programmed these approaches as iterators that return a subset of

the list of nodes. The code can be found in Appendix 9.

5.2.6 The main algorithm

Now that we have went over the important parts of the algorithm, the only thing

left is its main loop based on Algorithm 3, with the following additions:

• Validation: On the server, I retain a validation set and in each generation I

calculate and store the validation accuracy of the fittest model of the current

generation. This is not far fetched as we can assume that in a Federated setting

the server driving the learning would already have a dataset of it’s own.

• Avoiding local maximums: Based on the history of validation accuracies,

I check the last n entries for a match with the current validation accuracy. If

there is a match, I conclude that the evolution has reached a local maximum

and start gradually increasing the mutation rate and the mutation chance

multiplier which is initially set to 1. Once the algorithm is out of the local

maximum, I reset the values of the mutation rate and mutation chance to the

original values. There is an upper bound on the mutation multiplier. These

values are controlled by the hyper-parameters stuck_check_length, stuck_multiplier,

stuck_evasion_rate and stuck_multiplier_max.

• Saving best models: I save the fittest model of each generation.

The developed Federated Neuroevolution approach can be seen in Appendix 10.

39

CHAPTER 5. CASE STUDY

5.2.7 Results

Lastly, I present the results of running the evolution for 5000 generations. See

Appendix B.2 to see the fitness values and the validation accuracies during the

training. We can observe that the convergence was slow but steady, overall.

Minimum value Maximum value

Validation Accuracy 48.50% 85.28%

Fitness NMSE (Equation 5.4) −0.3297 −0.0903

Table 5.2: Federated Neuroevolution Performance on EEG Dataset

The stochastic nature of the learning comes from the random selection of node

subsets. This can be observed more closely in Appendix B.3.

From a fully random state, my algorithm was able to get to 85% validation

accuracy as seen in Table 5.2. This is, of course, a lot less than the baseline but still

a good result considering I am using Neuroevolution for training weights which is

not the best method for training Neural Networks as mentioned in Subsection 4.2.1.

With better hyper-parameters the performance could be increased.

40

CHAPTER 6. CONCLUSION

Chapter 6

Conclusion

I have introduced a new Federated Learning algorithm named Federated Neuroevolution,

as a modified version of the Neuroevolution algorithm adapted for the Federated

setting. In the case study, I have proved the algorithm is capable of solving problems

in the Federated setting.

Federated Neuroevolution’s advantage, compared to the FSVRG algorithm proposed

by the original paper[18], is that it is exposing even less client data to the server.

FSVRG exposes the client side data distribution and the gradients during learning.

Federated Neuroevolution only expose the amount of datapoints of the clients and

an abstract fitness number of the model.

The disadvantages are that the convergence is a lot slower. I needed 5000 iterations

of the algorithm to get to an 85% accuracy which is still less then the baseline’s 95%.

However, this could be improved with more thorough hyper-parameter search for

the algorithm.

In summary, I am trading off speed for privacy gains. We may need a lot of

communication rounds which can be bad in a real-world setting of mobile users but

for other use cases, like medical institutions, the rounds of communication is not

important at all while privacy aspect takes precedence instead.

Further work includes learning the network topology based on already developed

algorithms for topology learning with Neuroevolution in the single node setting [32].

41

BIBLIOGRAPHY

Bibliography

Books

[3] Isaac Asimov. Foundation Series. 1942–1993.

[37] Andreas Zell. Simulation Neuronaler Netze. Addison-Wesley, 1994. isbn: 3893195548.

Online Sources

[1] Google Photos application. url: https://en.wikipedia.org/wiki/Google_

Photos (Last accessed on 05/03/2019).

[2] Illustration of a Deep Convolutional Neural Network. url: http://neuralnetworksanddeeplearning.

com/chap6.html (Last accessed on 05/07/2019).

[4] Henri Begleiter. EEG Database Data Set. url: https://archive.ics.uci.

edu/ml/datasets/eeg+database (Last accessed on 05/13/2019).

[6] Josh Constine. Facebook talked privacy, Google actually built it. url: https:

/ / techcrunch . com / 2019 / 05 / 07 / show - dont - tell/ (Last accessed on

05/11/2019).

[7] Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Networks.

url: https://towardsdatascience.com/applied-deep-learning-part-

4-convolutional-neural-networks-584bc134c1e2 (Last accessed on 05/08/2019).

42

https://en.wikipedia.org/wiki/Google_Photos
https://en.wikipedia.org/wiki/Google_Photos
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://techcrunch.com/2019/05/07/show-dont-tell/
https://techcrunch.com/2019/05/07/show-dont-tell/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

BIBLIOGRAPHY

[9] Ahmed Gad. Artificial Neural Networks Optimization using Genetic Algorithm

with Python. 2019. url: https://towardsdatascience.com/artificial-

neural-networks-optimization-using-genetic-algorithm-with-python-

1fe8ed17733e (Last accessed on 05/15/2019).

[11] Raúl Gómez. Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy

Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names.

2018. url: https://gombru.github.io/2018/05/23/cross_entropy_loss/

(Last accessed on 05/14/2019).

[16] Prateek Karkare. Convolutional Neural Networks - Simplified. url: https:

//medium.com/x8-the-ai-community/cnn-9c5e63703c3f (Last accessed on

05/08/2019).

[17] Ruslan Klymentiev. EEG Data Analysis. 2019. url: https://www.kaggle.

com/ruslankl/eeg-data-analysis (Last accessed on 05/13/2019).

[27] Sethbin. MarI/O — A Neural Network capable of beating the classical game

Mario. url: https://youtu.be/qv6UVOQ0F44 (Last accessed on 05/13/2019).

[33] The AI Revolution: The Road to Superintelligence. Jan. 22, 2015. url: https:

//waitbutwhy.com/2015/01/artificial- intelligence- revolution-

1.html (Last accessed on 05/03/2019).

[34] THE MNIST DATABASE of handwritten digits. url: http://yann.lecun.

com/exdb/mnist/ (Last accessed on 05/05/2019).

Scientific Articles

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

“Empirical evaluation of gated recurrent neural networks on sequence modeling”.

In: arXiv preprint arXiv:1412.3555 (2014).

43

https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e
https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e
https://towardsdatascience.com/artificial-neural-networks-optimization-using-genetic-algorithm-with-python-1fe8ed17733e
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://medium.com/x8-the-ai-community/cnn-9c5e63703c3f
https://medium.com/x8-the-ai-community/cnn-9c5e63703c3f
https://www.kaggle.com/ruslankl/eeg-data-analysis
https://www.kaggle.com/ruslankl/eeg-data-analysis
https://youtu.be/qv6UVOQ0F44
https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY

[18] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik.

“Federated optimization: Distributed machine learning for on-device intelligence”.

In: arXiv preprint arXiv:1610.02527 (2016).

[19] Jakub Konečnỳ and Peter Richtárik. “Semi-stochastic gradient descent methods”.

In: arXiv preprint arXiv:1312.1666 (2013).

[20] WB Langdon. “Minimising testing in genetic programming”. In: RN 11.10

(2011), p. 1.

[21] Chenxin Ma, Jakub Konečnỳ, Martin Jaggi, Virginia Smith, Michael I Jordan,

Peter Richtárik, and Martin Takáč. “Distributed optimization with arbitrary

local solvers”. In: Optimization Methods and Software 32.4 (2017), pp. 813–848.

[24] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: arXiv preprint arXiv:1609.04747 (2016).

[25] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef

Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann,

Frank Hutter, Wolfram Burgard, and Tonio Ball. “Deep learning with convolutional

neural networks for EEG decoding and visualization”. In: Human brain mapping

38.11 (2017), pp. 5391–5420.

[26] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:

Neural networks 61 (2015), pp. 85–117.

[28] Virginia Smith, Simone Forte, Ma Chenxin, Martin Takáč, Michael I Jordan,

and Martin Jaggi. “Cocoa: A general framework for communication-efficient

distributed optimization”. In: Journal of Machine Learning Research 18 (2018),

p. 230.

[29] Joan G Snodgrass and Mary Vanderwart. “A standardized set of 260 pictures:

norms for name agreement, image agreement, familiarity, and visual complexity.”

In: Journal of experimental psychology: Human learning and memory 6.2 (1980),

p. 174.

44

BIBLIOGRAPHY

[32] Kenneth O Stanley and Risto Miikkulainen. “Evolving neural networks through

augmenting topologies”. In: Evolutionary computation 10.2 (2002), pp. 99–127.

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. “Spark: Cluster computing with working sets.” In: HotCloud 10.10-10

(2010), p. 95.

[36] Matthew D Zeiler. “ADADELTA: an adaptive learning rate method”. In: arXiv

preprint arXiv:1212.5701 (2012).

45

Glossary

Glossary

Artificial life Artificial life is a field of study wherein researchers examine systems

related to natural life, its processes, and its evolution, through the use of

simulations with computer models, robotics, and biochemistry.

See https://en.wikipedia.org/wiki/Artificial_life. 22

Control Flow In computer science, control flow (or flow of control) is the order

in which individual statements, instructions or function calls of an imperative

program are executed or evaluated.

See https://en.wikipedia.org/wiki/Control_flow. 3

Convolutional Neural Network (CNN) In deep learning, a convolutional neural

network (CNN, or ConvNet) is a class of deep neural networks, most commonly

applied to analyzing visual imagery.

See https://en.wikipedia.org/wiki/Convolutional_neural_network. 12

Darwinian Evolution Darwinism is a theory of biological evolution developed by

the English naturalist Charles Darwin (1809–1882) and others, stating that all

species of organisms arise and develop through the natural selection of small,

inherited variations that increase the individual’s ability to compete, survive,

and reproduce.

See https://en.wikipedia.org/wiki/Darwinism. 21

Directed Acyclic Graph (DAG) In graph theory a directed acyclic graph (DAG),

is a finite directed graph with no directed cycles. That is, it consists of finitely

46

Glossary

many vertices and edges, with each edge directed from one vertex to another,

such that there is no way to start at any vertex v and follow a consistently-directed

sequence of edges that eventually loops back to v again.

See https://en.wikipedia.org/wiki/Directed_acyclic_graph. 6

Directed Graph In graph theory, a directed graph (or digraph) is a graph that

is made up of a set of vertices connected by edges, where the edges have a

direction associated with them.

See https://en.wikipedia.org/wiki/Directed_graph. 4

Distributed Optimization Distributed optimization is a method where we try to

optimize a function f without having the data on a single central location. 13

Electroencephalography (EEG) Electroencephalography (EEG) is an electrophysiological

monitoring method to record electrical activity of the brain. It is typically

noninvasive, with the electrodes placed along the scalp, although invasive

electrodes are sometimes used, as in electrocorticography. EEGmeasures voltage

fluctuations resulting from ionic current within the neurons of the brain.

See https://en.wikipedia.org/wiki/Electroencephalography. 26

Evolutionary Algorithm Evolutionary Algorithm is a subset of evolutionary computation,

a generic population-based metaheuristic optimization algorithm. An Evolutionary

Algorithm uses mechanisms inspired by biological evolution, such as reproduction,

mutation, recombination, and selection.

See https://en.wikipedia.org/wiki/Evolutionary_algorithm. 2

Evolutionary Robotics Evolutionary Robotics (ER) is a methodology that uses

evolutionary computation to develop controllers and/or hardware for autonomous

robots.

See https://en.wikipedia.org/wiki/Evolutionary_robotics. 22

Fitness Function A fitness function is a particular type of objective function that

is used to summarise, as a single figure of merit, how close a given design

47

Glossary

solution is to achieving the set aims.

See https://en.wikipedia.org/wiki/Fitness_function. 2

Fraud Detection Fraud Detection is a financial background process during malicious

or fraudalent activities are detected in a financial system. This process can be

automated with Artificial Intelligence.

See https://en.wikipedia.org/wiki/Fraud#Detection. 5

General game playing General game playing (GGP) is the design of artificial

intelligence programs to be able to play more than one game successfully.

See https://en.wikipedia.org/wiki/General_game_playing. 22

Gradient Gradients are calculated during backpropagation to update the weights

of an ANN.

See https://en.wikipedia.org/wiki/Backpropagation. 2

Hyperparameter In machine learning, a hyperparameter is a parameter whose

value is set before the learning process begins. By contrast, the values of other

parameters are derived via training. Examples are stepsize, learning rate.

See https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning). 23

Kodkod Kodkods are the smallest wild cats living in South America.

https://en.wikipedia.org/wiki/Kodkod. 1

MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in

radiology to form pictures of the anatomy and the physiological processes of the

body in both health and disease.

See https://en.wikipedia.org/wiki/Magnetic_resonance_imaging. 3

Natural Language Processing Natural Language Processing is a subfield of Artificial

Intelligence which is concerned with analyzing and understanding naturally

spoken or written human languages.

See https://en.wikipedia.org/wiki/Natural_language_processing. 5

48

Glossary

Neuroevolution Neuroevolution is a form of artificial intelligence that uses evolutionary

algorithms to generate artificial neural networks, parameters, topology and

rules.

See https://en.wikipedia.org/wiki/Neuroevolution. 2

Positronic Brain The artificially created brains of the robots in Isaac Asimov’s

Robot universe. 1

Privacy Privacy is the ability of an individual or group to seclude themselves,

or information about themselves, and thereby express themselves selectively.

https://en.wikipedia.org/wiki/Privacy. 2

Privacy Aware A person is called Privacy Aware if he/she is cautious about how

his/her data is being handled by services and third parties.. 12

Pudú Pudús are the smallest deers and can be found in South America.

https://en.wikipedia.org/wiki/Pud%C3%BA. 1

Visual Cortex The visual cortex of the brain is that part of the cerebral cortex

which processes visual information. It is located in the occipital lobe. Visual

nerves run straight from the eye to the primary visual cortex to the Visual

Association cortex.

See https://en.wikipedia.org/wiki/Visual_cortex. 7

49

Acronyms

Acronyms

AI Artificial Intelligence. 1, 2

ANN Artifical Neural Network. 2, 4, 21, 23, 34, 48

ANNs Artifical Neural Networks. 2–6, 20, 22, 23, 66, 67

CNN Convolutional Neural Network. 8, 30, 32

CNNs Convolutional Neural Networks. 7, 8, 30

DNN Deep Neural Network. 5

EA Evolutionary Algorithm. 20–24, 34, 37

EAs Evolutionary Algorithms. 20, 21, 33, 37

FSVRG Federated Stochastic Variance Reduced Gradient. 14, 20

GA Genetic Algorithm. 34

ML Machine Learning. 1, 13, 29, 30

NE Neuroevolution. 22–24, 33

RNN Recurrent Neural Network. 6, 7

RNNs Recurrent Neural Networks. 6, 7

50

Acronyms

SGD Stohastic Gradient Descent. 9, 10, 14

SVRG Stochastic Variance Reduced Gradient. 13, 14

TWEANNs Topology and Weight Evolving Artificial Neural Network algorithms.

23

51

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Appendix A

Source Codes, Text files, Listings

1 import numpy as np

2

3

4 def individual_fitness_nmse(keras_model, X, y):

5 y_pred = keras_model.predict(X, batch_size=512)

6

7 try:

8 return -1.0 * mean_squared_error(y, y_pred)

9 except:

10 return -100000

11

12 def fitness_of_model_for_nodes(nodes, model_weights,

individual_fitness):↪→

13 keras_model = create_keras_model(model_weights)

14 weights_and_scores = np.array([node.evaluate_model(keras_model,

individual_fitness) for node in nodes]).transpose()↪→

15

16 return np.average(weights_and_scores[1],

weights=weights_and_scores[0], axis = 0)↪→

52

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

17

18

19 # Iteration is based on models because of massive overhead of keras

model creation.↪→

20 def federated_population_fitness_model_based(nodes,

individual_fitness, population_of_models):↪→

21 fitness_scores = [fitness_of_model_for_nodes(nodes, model,

individual_fitness) for model in population_of_models]↪→

22

23 return fitness_scores

Listing 7: Federated fitness calculation in Federated Neuroevolution

53

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

1 import numpy as np

2

3 class Node:

4

5 _id = 1

6

7 def __init__(self, id, X, y):

8 if id == None:

9 id = Node._id

10 Node._id += 1

11 self.id = id

12 self.X = X

13 self.y = y

14

15 def evaluate_model(self, model, individual_fitness):

16 return len(self.y), individual_fitness(model, self.X,

self.y)↪→

17

18

19 def evaluate_multiple_models(self, models, individual_fitness):

20 return len(self.y), [individual_fitness(model, self.X,

self.y) for model in models]↪→

21

22 def __eq__(self, other):

23 if other == None:

24 return False

25

26 myId = self.id

54

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

27 otherId = other.id

28 if myId == otherId:

29 return True

30 else:

31 return False

32

33 def __str__(self):

34 # Non alcoholic: [1, 0], Alcoholic: [0, 1]

35 argmaxed = np.argmax(self.y, axis = 1)

36 alcoholic_count = np.count_nonzero(argmaxed == 1)

37 non_alcoholic_count = np.count_nonzero(argmaxed == 0)

38

39 return "Node(id = |%d|, Sample count = |%d|, Alcoholic

samples = |%d|, Non-Alcoholic samples = |%d|)" %\↪→

40 (self.id, len(self.y), alcoholic_count,

non_alcoholic_count)↪→

41

42 __repr__ = __str__

Listing 8: The Node abstraction class

55

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

1 from abc import ABC, abstractmethod

2 import numpy as np

3

4 class NodeIteratorBase(ABC):

5

6 def __init__(self, X, y, change_interval):

7 self.change_interval = change_interval

8 self.nodes = NodeIteratorBase.split_nodes(X, y)

9 self._access_nr = 0

10 self.current_subset = []

11

12 @staticmethod

13 def split_nodes(X, y):

14 """

15 We will split the data into 1 order of magnitude less

nodes than the actual length of data.↪→

16 This ensures the 'Massively Distributed' federated

property.↪→

17 """

18 node_count = int(len(y) / 10)

19 log.info('Splitting |%d| data into |%d| nodes', len(y),

node_count)↪→

20 split_indices = np.append([0, len(X)],

np.random.choice(range(1, len(X)), node_count - 1,

replace=False))

↪→

↪→

21 split_indices.sort()

22 nodes = [Node(None, X[start:end], y[start:end]) for start,

end in zip(split_indices[:-1], split_indices[1:])]↪→

56

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

23 for node in nodes:

24 log.info(node)

25

26 return nodes

27

28 @abstractmethod

29 def update(self):

30 pass

31

32 def __iter__(self):

33 while(True):

34 yield self.__next__()

35

36 def __next__(self):

37 if self._access_nr % self.change_interval == 0:

38 self.update()

39

40 self._access_nr += 1

41 return self.current_subset

42

43 class NodeIteratorRandomSubset(NodeIteratorBase):

44

45 def __init__(self, X, y, change_interval, subset_ratio):

46 super().__init__(X, y, change_interval)

47 self.subset_ratio = subset_ratio

48

49 def update(self):

50 # Choosing a random set of nodes.

57

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

51 self.current_subset = np.random.choice(self.nodes,

int(len(self.nodes) * self.subset_ratio))↪→

Listing 9: Node iterator base class and Random Subset variant used in Federated

Neuroevolution

58

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

1 import numpy as np

2 from keras import backend as K

3

4 def run_federated_evolution(*, nodes_iterator, X_validate,

y_validate,\↪→

5 num_parents_mating, num_generations,

mutation_chance,mutation_rate,\↪→

6 best_fitness_of_each_generation,

best_accuracy_of_each_generation,

best_model_of_each_generation,

population_weights,\

↪→

↪→

↪→

7 stuck_multiplier, stuck_multiplier_max,

stuck_evasion_rate, stuck_check_length):↪→

8 y_validate_argmax = np.argmax(y_validate, axis = 1)

9

10 for generation in range(num_generations):

11 # Measuring the fitness of each individual in the

population.↪→

12 fitness_scores =

federated_population_fitness_model_based(next(nodes_iterator),

individual_fitness_nmse, population_weights)

↪→

↪→

13

14 best_fitness_of_each_generation.append(max(fitness_scores))

15 best_model_keras =

create_keras_model(population_weights[np.argmax(fitness_scores)])↪→

16

best_accuracy_of_each_generation.append(individual_accuracy(best_model_keras,

X_validate, y_validate_argmax))

↪→

↪→

59

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

17

best_model_of_each_generation.append(population_weights[np.argmax(fitness_scores)])↪→

18 # Selecting the best parents in the population for mating.

19 parents =

fittest_parents_of_generation(population_weights.copy(),

fitness_scores, num_parents_mating)

↪→

↪→

20 # Generating next generation using crossover.

21 offsprings = crossover(parents.copy(),

len(population_weights) - num_parents_mating)↪→

22 stuck_multiplier_value = min(stuck_multiplier,

stuck_multiplier_max)↪→

23 # Adding some variations to the offsrping using mutation.

24 offsprings = mutation(offsprings,

mutation_chance=mutation_chance *

np.sqrt(stuck_multiplier_value),

mutation_rate=mutation_rate * stuck_multiplier_value)

↪→

↪→

↪→

25 # Creating the new generation based on the parents and

offspring.↪→

26 population_weights = []

27 population_weights.extend(parents)

28 population_weights.extend(offsprings)

29 # If our accuracy is not increasing we try and speed up

mutation↪→

30 if generation > 0 and

best_accuracy_of_each_generation[generation] in

best_accuracy_of_each_generation[generation-stuck_check_length:generation]:

↪→

↪→

31 stuck_multiplier *= stuck_evasion_rate

32 else:

33 stuck_multiplier = 1

60

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

34 #cleanup resources

35 K.clear_session()

36

37 return best_fitness_of_each_generation,

best_accuracy_of_each_generation,

best_model_of_each_generation, population_weights

↪→

↪→

Listing 10: Federated Neuroevolution Algorithm

61

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 1 EEG Trial raw data
co2a0000364.rd

120 trials, 64 chans, 416 samples 368 post_stim samples

3.906000 msecs uV

S1 obj , trial 0

FP1 chan 0

0 FP1 0 -8.921

0 FP1 1 -8.433

...

0 FP1 253 4.262

0 FP1 254 5.727

0 FP1 255 8.169

FP2 chan 1

0 FP2 0 0.834

0 FP2 1 3.276

0 FP2 2 5.717

...

0 Y 250 3.153

0 Y 251 6.571

0 Y 252 12.431

0 Y 253 15.849

0 Y 254 16.337

0 Y 255 14.872

62

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 2 Baseline configuration
1 input_shape = (64, 256, 1)

2 num_classes = 2

3 batch_size=64

4 epochs=100

5

6 model = Sequential()

7 model.add(Conv2D(30, kernel_size=(1, 25),

8 input_shape=input_shape))

9 model.add(Conv2D(10, kernel_size=(64, 1)))

10 model.add(Lambda(lambda x: x ** 2))

11 model.add(AveragePooling2D(pool_size=(1, 15), strides=(1, 1)))

12 model.add(Lambda(lambda x: safe_log(x)))

13 model.add(Conv2D(2, kernel_size=(1, 8), dilation_rate=(15, 1)))

14 model.add(BatchNormalization(momentum=0.1))

15 model.add(Flatten())

16 model.add(Dense(num_classes, activation='sigmoid'))

17

18 model.compile(loss=keras.losses.categorical_crossentropy,

19 optimizer=keras.optimizers.Adadelta(),

20 metrics=['accuracy'])

63

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 3 Baseline summary___

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 64, 232, 30) 780

conv2d_2 (Conv2D) (None, 1, 232, 10) 19210

lambda_1 (Lambda) (None, 1, 232, 10) 0

average_pooling2d_1 (Average (None, 1, 218, 10) 0

lambda_2 (Lambda) (None, 1, 218, 10) 0

conv2d_3 (Conv2D) (None, 1, 211, 2) 162

batch_normalization_1 (Batch (None, 1, 211, 2) 8

flatten_1 (Flatten) (None, 422) 0

dense_1 (Dense) (None, 2) 846

===

Total params: 21,006

Trainable params: 21,002

Non-trainable params: 4

64

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 4 Final hyperparameters of the Federated Neuroevolution Algorithm
node_activation_ratio = 0.10

node_subset_change_interval = 10

population_size = 50

num_parents_mating = 8

num_generations = 5000

mutation_chance = 0.01

mutation_rate = 3

stuck_multiplier = 1

stuck_evasion_rate = 1.25

stuck_multiplier_max = 5

stuck_check_length = 30

65

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 5 Kernelwise mixing of 2 ANNs’ weights

1 import numpy as np

2

3 # Mixing too models by keeping their kernel weights intact

4 def kernelwise_mix(model_a, model_b):

5 mix = []

6 for i in range(len(model_a)):

7 layer_a = model_a[i]

8 layer_b = model_b[i]

9 # choosing kernels

10 choice = np.random.randint(2, size = int(layer_a.size /

layer_a.shape[-1])).reshape(layer_a.shape[:-1]).astype(bool)↪→

11 # extending the chosen kernel bools to the level of single

values↪→

12 choice = np.repeat(choice,

layer_a.shape[-1]).reshape(layer_a.shape)↪→

13

14 layer_mix = np.where(choice, layer_a, layer_b)

15 mix.append(layer_mix)

16

17 return mix

66

APPENDIX A. SOURCE CODES, TEXT FILES, LISTINGS

Listing 6 Mutating the weights of an ANNs

1 import numpy as np

2

3 def mutation(offsprings, mutation_chance=0.1, mutation_rate=1):

4

5 for offspring in offsprings:

6 for layer in offspring:

7 trues = np.full(int(layer.size * mutation_chance), True)

8 falses = np.full(layer.size - trues.size, False)

9 mutation_indices = np.append(trues, falses)

10 np.random.shuffle(mutation_indices)

11 mutation_indices = mutation_indices.reshape(layer.shape)

12

13 # The random value to be added to the gene.

14 mutation_multiplier = np.random.normal(loc=0.0,

scale=0.01 * mutation_rate, size=1)↪→

15 layer[mutation_indices] = layer[mutation_indices] +

layer[mutation_indices] * mutation_multiplier↪→

16

17 return offsprings

67

APPENDIX B. VISUALIZATIONS

Appendix B

Visualizations

68

APPENDIX B. VISUALIZATIONS

Figure B.1: Data distribution among nodes. Total node count is 721, but only first

100 node is displayed here.

69

APPENDIX B. VISUALIZATIONS

Figure B.2: Running Federated Neuroevolution on the EEG dataset for 5000

generations. Fitness is NMSE 5.4, Accuracy is validation accuracy.

70

APPENDIX B. VISUALIZATIONS

Figure B.3: Zooming in on the training for a 200 generation span.

71

	Introduction
	Neural Networks
	Core concepts
	Most Common Neural Network Architectures
	Deep vs Wide Networks
	The flow of information in Neural Networks

	Training the network

	Federated Learning
	Problem setting
	Industry Solutions
	New approach: Federated Learning
	Why would we switch to Federated Learning?
	Challenges of Federated Learning

	Evolutionary Algorithms for Federated Learning
	What are Evolutionary Algorithms?
	EAs for Neural Networks
	Training scope
	Encoding

	Federated Neuroevolution

	Case Study
	The EEG Alcohol Dataset
	Implementation
	Setting up a baseline
	Federated Neuroevolution Solution
	Mutation function considerations
	Federated fitness function
	Avoiding overfitting
	The main algorithm
	Results

	Conclusion
	Glossary
	Acronyms
	Source Codes, Text files, Listings
	Visualizations

