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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

As a big Sci-� fan and programmer I was always interested in Robotics and Arti�cial

Intelligence (AI). During my bachelor's studies this interest grew larger with each

passing semester and each Sci-� book I read. At the end of my bachelor's I decided

I would not stop learning and pursue my master's studies at ELTE in the hopes

of broadening my knowledge about Arti�cial Intelligence (AI). I wanted to be part

of The AI Revolution [33] to bene�t from it and to control it as well to all of our

bene�ts.

I personally think that the motivation for investing in the �eld roots from human

laziness. Isaac Asimov has laid this out perfectly in the Foundation Series [3] where

humans create the Positronic Brain that drives the robots of his universe. These

robots do all the hard work and eventually even the thinking instead of humans.

We see more and more materialization of this theory if we carefully look around us.

Autonomous vacuum cleaners, self-driving cars, photo categorization programs have

a common feature: They free us from work that would otherwise be left for us to do.

There is a key di�erence between man and machine regarding the learning

process. If you show a picture of a Pudú and a Kodkod to a human he will be

able to correctly classify a set of pictures of these animals. This is not the case

with Machine Learning (ML) algorithms however. These algorithms require massive

amounts of example data and lots of iterations of training for the machines to be

1



CHAPTER 1. INTRODUCTION

able to do the same. The boom in Arti�cal Neural Networks (ANNs) we could see in

these past years is due to the immense growth in processing power and data storage

capabilities. These two factors enable us to e�ectively train the ANNs these days.

Another driving factor of the recent the AI boom is user generated data. A lot

of services are built upon and improved continually with the data gathered from

users through mobiles or their computer browsers. A good example of this would be

Google Photos [1] which is a service that can automatically label user photos into

categories like cats or dogs. This is achieved after lots of training on data generated

dynamically by the users of the application.

There is a problem however with the current popular training methods. All of

them rely on users uploading their data into the cloud where the services are trained

based on all the data collected from all of the users. There are two issues with this.

The �rst is that users are giving up some of their Privacy. The second is that the

data can be very big in size so exchanging it could require a lot of network tra�c.

An interesting solution to this problem is Federated Learning which comes from

the paper Federated Optimization: Distributed Machine Learning for On-Device

Intelligence [18]. Here the authors propose a training method where the users need

not send their data to the server. Instead, the training of the model is done by the

server sending a version of the model to the users and the users evaluate the model

and send back the Gradients to the server which aggregates these gradients and

updates the model.

In this thesis I propose a new, privacy preserving training methodology called

Federated Neuroevolution which is done via distributively evaluating the Fitness

Function of the utilized Evolutionary Algorithm.
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CHAPTER 2. NEURAL NETWORKS

Chapter 2

Neural Networks

There are some problems in the real world that are just very hard to grasp and

formulate using standard algorithmic approach. For example, trying to formalize in

code what does a cat look like, or to have an algorithm that separates cat images

from dog images we would most likely fail. But our brains and even the brains of

very simple animals are in fact very good at this sort of pattern recognition. Trying

to understand and simulate them is where the �eld of Arti�cal Neural Networks

(ANNs) resides.

2.1 Core concepts

With Arti�cal Neural Networks we are essentially trying to mimic the inner workings

of the brain in hopes of solving complex problems which would be near impossible

to formulate with a hand crafted Control Flow. 1

1We can not exactly reproduce how the brain works as biologists do not yet have a de�nitive

answer to that. This is because of technical limitations as even the most precise MRI is not precise

enough to show us the low level mechanisms of the biological brain. So biologists have a top-down

view of the brain whereas we programmers inherently use bottom-up approach when creating an

algorithm.
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Figure 2.1: Non-linear functions used in

ANNs as activation functions

The ANN is a Directed Graph based

on a collection of Arti�cial Neurons. In

the graph, the nodes are the neurons

and they can have edges between them

in any direction. If a neuron receives

a signal from an incoming edge it can

send out signals on the outward edges.

Each neuron evaluates an activation

function that determines how strong the

activation of the neuron is, and thus how

strong the outgoing signal is. The input

of the activation function is the sum of

inputs to the neuron. The edges have

weights to them that modify the strength of the signals traveling on that edge. These

signals and weights are represented by real numbers. Inside the neuron, there usually

reside some non-linear function that will calculate the output of the neuron (see

�gure 2.1 for the most common non-linear functions used as activation functions).

Figure 2.2: A simple ANN topology

The networks are usually following

some kind of structure. The most

common is the layered structure where

multiple neurons are making up a layer

and these layers are stacked on each

other. A neuron in a layered structure

only has incoming edges from neurons

in the layer directly below and outgoing

edges to neurons in the layer directly

above it. In such a layered structure the

�rst layer is called the input layer where

the stimuli to the network comes in. For example visual data as in each pixel of an
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image is stimulating a neuron of the input layer. The last layer is called theoutput

layer which will return the result of the calculations. An example output could be

2 numbers where the numbers refer to the likeliness of the input image depicting a

cat or a dog respectively. The layers between the input layer and the output layer

are calledhidden layers. Such architecture can be seen in �gure 2.2.

2.2 Most Common Neural Network Architectures

As with any directed graph, ANNs can have many shapes, sizes and structures based

on which we can categorize them. In this section we will review the di�erent aspects

based on which we can categorize the networks.

2.2.1 Deep vs Wide Networks

The networks can be categorized based on the size and number of hidden layers.

We refer to a Neural Network as a Deep Neural Network (DNN) if it has

many2hidden layers between the input layer and the output layer. This is the most

common model used nowadays as it can be trained to recognize patterns with high

precision. Example tasks include Image Classi�cation, Natural Language Processing,

Fraud Detection, etc. An example of a Deep Neural Network can be seen in Figure

2.3.

A Neural Network is considered wide if the hidden layers have a lot more2 neurons

in them than what is usual. A network being wide does not rule out it being deep

as well however it is possible to have just one very wide hidden layer in Neural

Network.
2These terms are not exactly quanti�ed in the industry as these might be relative to the given

application domain.
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Figure 2.3: A Deep Neural Network topology [2]

2.2.2 The �ow of information in Neural Networks

We can categorize ANNs based on the direction of information �ow inside them. As

mentioned in 2.1, Neurons communicate with other neurons through signals.

Feedforward Neural Networks

Feedforward neural networks have a key distinguishing property: The graph of

Neurons is a Directed Acyclic Graph (DAG) [37]. The feedforward neural network

was the �rst and simplest type of arti�cial neural network created [26]. In this

network, the information moves in only one direction, forward, from the input nodes,

through the hidden nodes (if any) and �nally to the output nodes [37]. Both Figures

2.2 and 2.3 are Feedforward networks.

Recurrent Neural Networks

As opposed to Feedforward Networks the Recurrent Neural Networks (RNNs) have

no acyclic constraints. In fact, what makes a Neural Network recurrent is that it

contains cycles in it, called feedback loops. These feedback loops create a unique

mechanism for these network that allows them to maintain information between

inputs. What this means in practice is that a RNN can maintain contextual information,

6
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i.e. Recurrent Neural Networks have memory. See an example Recurrent Neural

Network in Figure 2.4.

This memory bene�t of RNNs make them �t for solving problems that would be

impossible without knowledge of the context. For example accurately predicting the

next word the user will type requires not only the information about the last word,

but the words before that and, possibly, even the sentiment of the sentences before.

Other application areas include translation between human languages, time series

prediction, speech recognition, motion picture analysis, just to name a few.

Note that Recurrent Neural Networks can be further divided into many di�erent

subcategories but it is out of scope for this thesis to cover them. There is a good

overview of them in theEmpirical evaluation of gated recurrent neural networks on

sequence modeling[5].

Figure 2.4: A very simple Recurrent Neural Network topology where we only have 1

input neuron, 1 neuron in the single hidden layer and 1 output neuron (left). Note

the feedback look in the hidden layer which makes this network recurrent. On the

right we can see this loop unfolded. [8]

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of Deep Feedforward

Networks designed based on the Visual Cortex of the human brain in order to mimic

it's capabilities at understanding visual imagery using computer vision. The input of

7
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(a) Input matrix and �lter matrix (b) Filtering works with matrix

multiplication

Figure 2.5: Filters example [7]

these networks is usually a 2d image so each neuron in the input layer corresponds

to a pixel of the input image. The output of the network is the same as with any

other network type.

The main innovation of CNNs lies in the hidden layers where we introduce a new

layer type called Convolutional Layer. A Convolutional layer is a set of �lters/kernels.

Each �lter is a small matrix that represents an elementwise multiplication operation

as depicted in Figure 2.5. During the training phase these matrix values are modi�ed

using the weights to focus on di�erent aspects of the input image like certain shapes

or patterns. See Figure 2.6 for an illustration.

The purpose of these Convolutional Layers is to extract certain features of

the image. With each added convolutional layer we go from simple features like

horizontal or vertical lines to more complex ones like ears and eyes. Based on these

higher level features, the classi�cation can be done in the output layer of the CNN.

2.3 Training the network

Mathematically a Neural Network is a function that renders some output to the

input and can be de�ned asF : X ! Y whereX � Rd is the input and Y � R is

the output of the network. More speci�cally f (x) is the network which is built up

from a composition of neuronsgi (x). Integrating the activation functions we get the

8
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(a) Horizontal Filter (b) Vertical Filter

Figure 2.6: Visual outputs of two �lters [16] on an example from the MNIST Data

[34]

f (x) = K (
P

i wi gi (x)) as the Neural Network mathematical formula wherew are

the weights of the network andK is an activation function. In this thesis I will only

consider Supervised Learning scenarios where we have a set of example input-output

pairs in the form of f x i ; yi gn
i =1 wherex i 2 Rd and yi 2 R while n is the number of

input data points (the size of the data set) at hand.

The training of the neural network is the process during which we achieve a state

of the network's weights which is considered optimal. Optimality is measured by a

cost or loss function that renders a real number to a functionf 2 Y X . The form of

loss function isC : Y X � Rd ! R. A very popular loss function is the Mean Squared

Error which is de�ned as in equation 2.1

MSE (f ) =
1
n

nX

i =1

(f (x i ) � yi )2 (2.1)

Before the training process can start, we need to initialize the weights. This is

usually done by randomizing the weights to some small non-zero numbers.

During the training, in each iteration we evaluate the currentf i network using

our loss function. This will indicate how far isf i from the optimal state. The problem

is how do we determinef i +1 so that MSE (f i ) > MSE (f i +1 ).

For this we have a family of methods called Backpropagation. These methods

calculate the gradient of the loss function and modify the weights based on that.

One of these methods is Stohastic Gradient Descent (SGD) which is formalized as

9
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wij (t + 1) = wij (t) � �
@C
@wij

(2.2)

where� is the learning rate,C is the cost (loss) function.

We have many optimization methods that are based on the gradient descent

trick of backpropagation. Stohastic Gradient Descent updates the weights after each

training example. The loss function will be �uctuating quite heavily because of this.

Reviewing all the di�erent, currently used optimization techniques is outside of the

scope of this thesis. For those interested I recommend checkingAn overview of

gradient descent optimization algorithmsby Sebastian Ruder [24].

10



CHAPTER 3. FEDERATED LEARNING

Chapter 3

Federated Learning

In October 2016, Jakub Kone£n�y, H Brendan McMahan, Daniel Ramage, and Peter

Richtárik published Federated Optimization: Distributed Machine Learning for On-Device

Intelligence [18], where they introduced the concept of Federated Learning. Because

this thesis is largely built upon the ideas introduced in their publication, I will

summarize their article in this chapter.

3.1 Problem setting

When we are talking about Machine Learning problems we usually refer to a mathematical

function that can approximate a problem de�ned with input-output pairs after

setting the correct weights of the function. Usually we have a set of input-output

pairs f x i ; yi gn
i =1 wherex i 2 Rd andyi 2 R. Based on a loss function we can iteratively

approximate the originalf by computing our f i loss function. Formally, the function

we are searching for looks like

min
w2 Rd

f (w) where f (w) =
1
n

nX

i =1

f i (w) (3.1)

As an example, in the case of the famous MNIST Dataset [34], all of thex i is

a greyscale image of size 28x28 (x i 2 R28� 28). The output yi is a vector signaling

which digit it is on the image (yi 2 R10). The dataset contains 70000 images in total,

11
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so n = 70000. We can simply download the data and build a Convolutional Neural

Network (CNN) (as explained in 2.2.2) to solve this classi�cation problem.

Solving such problems has undergone heavy research in the past decades and is

quite well understood now. However, in a lot of the industry settings the problems

are not that simple. The data is often very fragmented and heavily distributed.

Users generate a lot of data with their mobile phones and gathering the data from

all of them to build a model on them is impossible in most cases as we can't �t this

amount of data into a single computer.

Even if users could upload the data to a server, the concern of privacy is raised. In

recent years, there are more and more so-called Privacy Aware users who no longer

want their data being sent to and stored at a cloud.

A naive idea would be to train the models on the nodes themselves, where the

data is. The problem with this is twofold. The �rst problem is that a node may

not contain all the kinds of data we want to handle in our model. For example a

dog person would only have photos of his/her dog so we could not build a model of

classifying dogs versus cats relying on his phone alone. The second problem is that

data volume may vary heavily from node to node. For example, a less active user

does not have much data that can be of use. The above explained properties we will

call Federated Properties and can be summarized as in the list below.

ˆ Massively Distributed Data points are stored across a large number of

nodesK . In particular, the number of nodes can be much bigger than the

average number of training examples stored on a single node (n=K ).

ˆ Non-IID Data on each node may be drawn from a di�erent distribution; that

is, the data points available locally are far from being a representative sample

of the overall distribution.

ˆ Unbalanced Di�erent nodes may vary by orders of magnitude in the number

of training examples they hold.

12
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3.2 Industry Solutions

The usual answer to this problem in the industry is to collect the data from the

users - however costly this may be - and solve the problem in a centralized location

where it could be shu�ed and distributed evenly over proprietary compute nodes.

Such distribution could be handled using Spark [35] by evenly distributing data to

the nodes and run the single core baseline algorithms over the nodes. This, however,

is a very hard constraint and does not conform with the Federated Properties so a

heavy data lifting step is required as pre-processing.

Another good solution to the distributed calculation is the CoCoA+ framework,

which require minimal changes for distributed calculation compared to the single

node version and can use any single node base algorithm to be distributed among

the nodes [21] [28]. With CoCoA+ the data can be provided to the framework as-is,

so the data preprocessing step can be spared. The downside of CoCoA+ is that it is

constrained to the dual form of the optimization problems whereyi 2 f� 1; 1g and

the algorithm converges very slowly.

Both of these solutions have in common the need for synchronization in each

iteration. This is due to aggregation of partial results from the nodes needed at each

iteration step. This is a hard constraint and has a signi�cant impact on the overall

performance of the system.

3.3 New approach: Federated Learning

Federated Learningor Federated Optimizationis a new kind of Distributed Optimization

where users or nodes do not send the data they generate to the server, but rather

provide part of their computational power to be used to solve the optimization

problem. It's purpose is to e�ciently solve Machine Learning problems wich have

Federated Properties.

The Algorithm proposed in the original paper [18] is a modi�ed version of the

Stochastic Variance Reduced Gradient (SVRG) [15, 19] algorithm which itself is

13



CHAPTER 3. FEDERATED LEARNING

based on the widely acknowledged Stohastic Gradient Descent (SGD) explained in

the section 2.3. Let us �rst examine the original SVRG algorithm, described in

Algorithm 1. There are some common variables we will be using in these algorithms

that are listed in the below list.

ˆ n � the number of data points / training samples

ˆ nj = jf i 2 1; :::; n : x i j 6= 0gj � the number of data points with nonzero j th

coordinate

ˆ � j = nj =n � frequency of appearance of nonzero elements inj th coordinate

Algorithm 1 SVRG

1: procedure SVRG (m; h) . m number of stochastic steps per epoch,h the step

size

2: Initialize wt randomly

3: for s = 0; 1; 2; ::: do

4: Compute and storer f (wt ) = 1
n

P n
i =1 r f i (wt )

5: w = wt . w t is randomly initialized

6: for t = 1 to m do

7: Pick i 2 f 1; 2; :::ng, uniformly at random

8: w = w � h(r f i (w) � r f i (wt ) + r f (wt ))

9: end for

10: wt+1 = w

11: end for

12: end procedure

The modi�ed version is called Federated Stochastic Variance Reduced Gradient

(FSVRG) and can be examined in Algorithm 2. To understand it, we need a few

new variables such that:

ˆ K � the number of nodes

14
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ˆ Pk � set of indices, corresponding to data points stored on devicek

ˆ nk = jPk j � the number of data points on node k

ˆ nj
k = jf i 2 P k : x i j 6= 0gj � the number of data points stored on node k with

nonzeroj th coordinate

ˆ � j
k = nj

k=nk � frequency of appearance of nonzero elements inj th coordinate

on nodek

ˆ sj
k = � j =� j

k � ratio of global and local appearance frequencies on nodek in

j th coordinate

ˆ Sk = Diag(sj
k) � diagonal matrix, composed of sj

k as j th diagonal element

ˆ ! j = jfP k : nj
k 6= 0gj � Number of nodes that contain data point with nonzero

j th coordinate

ˆ aj = K=! j � aggregation parameter for coordinate j

ˆ A = Diag(aj ) � diagonal matrix composed of aj as j th diagonal element

Now let's explore a bit more on why this algorithm works well in the federated

setting. Below is a list of some key points of the algorithm:

1. Introduced local step size ( hk = h=nk) One of the key problems I named in

section 3.1 was that the distribution of data between the nodes can be heavily

Unbalanced. We can clearly see that if a node has thousands of data points

we require smaller step size in each iteration of data point than for a node

where we have only a few data points. The local step size helps us to even out

the data size di�erences and achieve roughly the same magnitude of weight

progress on each node regardless ofnk .

15
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Algorithm 2 FSVRG

1: procedure FSVRG (step sizeh, data partition fP kgK
k=1 ,

diagonal matricesA, Sk 2 Rd� d for k 2 f 1; :::; K g)

2: for s = 0; 1; 2; ::: do . Overall iterations

3: Compute r f (wt ) = 1
n

P n
i =1 r f i (wt )

4: for all k = 1 to K do in parallel over nodesk . Distributed loop

5: Initialize: wk = wt and hk = h=nk

6: Pick i 2 f 1; 2; :::ng, uniformly at random

7: Let f i tg
nk
t=1 be random permutation ofPk

8: for t = 1; :::; nk do . Actual update loop

9: wk = wk � hk(Sk [r f i t (wk) � r f i t (w
t )] + r f (wt ))

10: end for

11: end for

12: wt+1 = wt + A
P K

k=1
nk
n (wk � wt )

13: end for

14: end procedure

16
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2. Aggregation of updates proportional to partition sizes ( nk
n (wk � wt ))

Intuitively we can understand that an update coming from a node with thousands

of data points should have a bigger weight than an update coming from a node

with only a few data points. Aggregating weight updated with respect to the

size ofnk compared ton solves this issue.

3. Scaling stochastic gradients by diagonal matrix Sk In our problem

setting (section 3.1) I said that the data could be distributed so that a node

does not have an IID local portion of the data. Imagine a scenario where one

user has thousands of images of a dog, but none from the other class of the cats.

In such scenario, this node should not have a large impact on the gradients of

the network that are related to cat classi�cation. This point does that exactly

through scaling the weight updates on the node in accordance with the node's

data distribution.

4. Per-coordinate scaling of aggregated updates A(wk � wt ) This scaling

goes hand in hand with Point 3. In Point 3, we scale down the updates

for classes the node does not have on the client side. In Point 4, when we

aggregate on the server side we scale the values of nodes according to their

class distribution.

3.4 Why would we switch to Federated Learning?

Federated Learning certainly requires the adoption of new viewpoints which requires

time and e�ort from the industry that is already used to the solutions discussed in

Section 3.2. These solutions have been working well for the industry so why should

they change?

One reason to change is that users are becoming more and more aware of their

privacy with each privacy related scandal. This created a new environment in which

tech companies focused on privacy have an existing and emerging user demand to

supply for.
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A good example of this is that at the Google I/O 2019 conference a lot of the

emphasis was on distributed Machine Learning. Google CEO Sundar Pichai said

that �Gboard is already using federated learning to improve next-word prediction�

and Google's Senior Director of Android, Stephanie Cuthbertso said that �On-device

machine learning powers everything from these incredible breakthroughs like Live

Captions to helpful everyday features like Smart Reply. And it does this with no

user input ever leaving the phone, all of which protects user privacy� [6].

Another driving factor could be to decrease the investment required in centralized

computational power. This seems reasonable as data is ever growing and the user's

phones are idle at most of the time which makes their utilization really poor.

The �nal driving factor could be political pressure. There could come a time

when countries start regulating the privacy requirements of software. If such political

changes ever come, Federated Learning will be there in our toolbox to conform with

the new regulations.

3.5 Challenges of Federated Learning

Federated Learning is a new area and with every new �eld of research there is still

room for improvement. The below list gives a summary of key weaknesses that are

identi�ed by the authors of Federated Learning [18].

1. The proposed algorithm is synchronous and each iteration of the global model

requires synchronization with all the nodes. This is the main performance

bottleneck of the algorithm as per node wait times can vary heavily based on

the amount of data available on the node and the computational power of the

node. An Asynchronous research on Federated Learning would be desirable.

2. For non-convex problems like Neural Networks there are no convergence guarantees

of the FSVRG algorithm.

3. There is still some privacy leaked from the nodes through the gradients and the
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per node class meta data. Both of these are essential for the FSVRG algorithm

despite these still giving away some part of the user's privacy.

4. With the FSVRG algorithm we are building a global model. This is good in

general but we could improve user experience if the model was biased towards

the user's local data. This is certainly an improvement that could be done for

users with big amount of local data.
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Chapter 4

Evolutionary Algorithms for

Federated Learning

As discussed in 3.4 there is still some privacy related concerns with the FSVRG

algorithm, described in algorithm 2. The proposed algorithm exposes class distribution

of the nodes and the gradients also contain some information about the actual data

on the nodes [18]. In this thesis, I propose a new method for Federated Learning

that is completely di�erent from FSVRG but still solves the problem introduced in

the section 3.1.

The method I suggest is a modi�ed Evolutionary Algorithm (EA). As we will

see, these algorithms do not require any knowledge about the data they are being

tested on as, in general, an EA can handle the data as a black box. This eliminates

the need to know about data distribution on the node as well as gradients are no

longer needed either.

4.1 What are Evolutionary Algorithms?

First let us discuss what are Evolutionary Algorithms (EAs). Back in chapter 2, I

mentioned that Arti�cal Neural Networks are based on nature itself. However, as we

have seen in section 2.3, we have constructed our own methodology for training the
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network that could be di�erent than how the biological neural networks are trained

in living beings.

With Evolutionary Algorithms the programming community has yet again reached

out to concepts that we have observed in nature. Evolutionary Algorithms belong to

the family of Evolutionary Computation in which we use heuristics and stochastic

processes for global optimization.

Evolutionary Algorithms are based on terms we know from Darwinian Evolution.

The main terms in biology are �tness, selection, reproduction and mutation. These

have very similar names and de�nitions in our �eld which are fully explained in the

following list:

ˆ Individual An individual is an instance of the solution to the problem that we

are trying to optimize. Individuals are problem speci�c. An individual could

be for example a vector of values each representing a hyperparameter of a

training algorithm, or the weights of an ANN.

ˆ Population A list of individuals

ˆ Generation The population of a speci�c iteration of the algorithm

ˆ Fitness A real number indicating the goodness of an individual

ˆ Selection The process of selecting the best individuals of a generation to for

reproduction

ˆ Crossover The reproduction process during which we create new individuals

- called o�springs - by some form of mixing of selected parents

ˆ Mutation The process of randomly changing the o�springs

The most basic form of EA is explained using pseudocode in Algorithm 3. The

power of the algorithm is that it is very generic and can be used for solving any

optimization problem. To apply to a speci�c problem we only need to de�ne the

representation of our individuals and the functions for operating on them.
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Algorithm 3 Evolutionary Algorithm

1: create populationP randomly

2: n = jPj

3: while : �tness_goal_is_met( P) do

4: f f i gn
i =1 = f f itness (Pi )gn

i =1 . Evaluate �tness of population

5: parents = best_individuals( P; f ) . select the best individuals for breeding

6: of fsprings = crossover(parents) . the newly bred individuals

7: for of fspring in of fsprings do . Mutate the of fsprings

8: of fspring = mutate( of fspring )

9: end for

10: P = parents [ of fsprings

11: end while

4.2 EAs for Neural Networks

Neuroevolution (NE) is a form of arti�cial intelligence that uses evolutionary algorithms

to optimize the parameters and topology of Arti�cal Neural Networks (ANNs) [30].

There are certain situations where input-output pairs are not available for training

a network using gradient based techniques. Neuroevolution excels in these situations

because the Evolutionary Algorithm's �tness function is so generic it can be applied

in a lot more cases. Such �elds include but not limited to are Evolutionary Robotics,

Arti�cial life and General game playing.

One very famous example of the application of Neuroevolution is an AI developed

by Sethbing where he uses NE to train a network that can beat Mario [27]. This is a

perfect example of Neuroevolution where gradient based methods are not accessible

as we do not have training data. The �tness function here was simply measuring

how far did the agent get in the level.

Neuroevolution has many implementations which di�er in key features. In the

following sections we will review these traits.
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4.2.1 Training scope

In the classic gradient based learning we have a �xed network topology where we

are only adjusting the weights of the network using backpropagation, as can be seen

in the section 2.3.

In the case of Conventional Neuroevolution we are learning the weights of an

ANN using Evolutionary Algorithm and not modifying the topology. The problem

with this is that without gradients we do not know the slope so the learning is very

stochastic. The bene�t of Conventional Neuroevolution, however, is that it can avoid

being stuck in local minimums with the right Hyperparameters. Such an algorithm

is calledNeuro-genetic evolutionby E. Ronald [23].

Another class of Neuroevolution algorithms are Topology and Weight Evolving

Arti�cial Neural Network algorithms (TWEANNs). These algorithms not only optimize

the weights of ANNs but also adjust the network topology. This is the main reason

for existence of Neuroevolution as this is something that can not be done with

regular training methods. The two most famous TWEANNs areNeuroEvolution of

Augmenting Topologies(NEAT) [31] and Hypercube-based NeuroEvolution of Augmenting

Topologies(HyperNEAT) [10].

4.2.2 Encoding

Another dividing aspect of Neuroevolution algorithms is the way they encode information

about the ANNs, as introduced in the following paragraphs.

Direct Encoding

Direct Encoding is the trivial way of storing network information: we directly store

the full network topology and all of the weights in each individual of the population.

The issue with this is that the problem space grows very fast as we scale up the

network (which we need if we want to solve complex problems).
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Indirect Encoding

The solution to the scaling problem of Direct Encoding can be solved with Indirect

Encoding. The way to handle this problem is to compress the information and only

store part of it or generative information about it. In this case each individual only

stores information about how to generate the network.

It is possible to store only the network topology in the genetic information.

The �tness function in this case can calculate some metrics for the individual after

training for some epoch using a regular gradient based learning method.

It is also possible to store compressed information about the weights like it is

done in HyperNEAT [10].

4.3 Federated Neuroevolution

In this section I propose a solution on how to use Neuroevolution to solve the

Federated Learning problem described in the section 3.1. In short, the main idea of

this algorithm is that the server generates a new generation of models and sends

these to all the clients. The clients evaluate the �tness of each model and send it

back to the server for aggregation. The server then generates a new generation of

models and the loop starts again.

To use Neuroevolution in a Federated setting, we need not modify the base

Evolutionary Algorithm extensively. The only point where we need to interfere is at

line 4 of Algorithm 3. The �tness function acts as a black box from the perspective

of the main algorithm so no other change is needed. The proposed �tness function

is described in Algorithm 4.

We will de�ne a distributed �tness function that sends the models to the nodes.

The nodes locally evaluate the models and send back their �tness values as measured

on local data. Of course, this can be done parallel on all the nodes.

Because of the Non-IID and Unbalanced properties of the node data distribution

I am not considering indirect encoding options, as optimization done on the node
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could diverge the model heavily due to local data properties. With direct encoding

we are keeping a strong control of the evolution on the server side, thus, clients can

not over�t the models too much. The drawback of the direct encoding is the larger

search space. Because of this, we will only be learning weights of the network and

not its topology.

Algorithm 4 Federated Fitness

1: procedure Federated_Fitness (nodesfN kgK
k=1 , population of modelsP)

2: n = jPj

3: for all k = 1 to K do in parallel over nodesk . Distributed loop

4: f f k
i gn

i =1 = f f itness (Pi )gn
i =1 . Evaluate �tness of population on nodek

5: nk = jN k j . Get the number of training examples of the node

6: end for

7: f f i gn
i =1 = f

P K
j =1 n j � f j

iP K
j =1 n j g . Get a weighted average of the node level �tnesses

8: return f

9: end procedure
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Chapter 5

Case Study

In this chapter, I will show how the theory behind Federated Neuroevolution is

capable of solving a problem through a case study.

5.1 The EEG Alcohol Dataset

As Federated Learning is a relatively new concept, thus, there are no datasets

publicly available that are already split into nodes. The original paper also didn't

have such a dataset, but created one by splitting a dataset into virtual nodes based

on users posting on Google+ [18]. The splitting was done such that each user

represented a node.

The dataset I have used is the EEG Database Data Set [4]. The dataset contains

120 Electroencephalography (EEG) trial data about 122 patients who either belong

to the alcoholic or to the control group. In each trial the patients were shown 1

or 2 image of the Snodgrass and Vanderwart picture set [29]. After showing them

the stimuli, their brain activation was measured for 1 second on 64 points at 256

Hertz. A trial contains the following data (an example trial data can be seen in the

Appendix 1):
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Figure 5.1: EEG Points of measurements on the scalp [17]

ˆ Stimulus type Can be one of the following:S1, S2 match, S2 nomatch. S1

means that only 1 image were shown. S2 match means that 2 images were

shown of the same class, S2 nomatch means that 2 images were shown from

di�erent classes.

ˆ Trial number The number of the trial

ˆ Measurement data Measurement data contains the place of sensor on the

scalp, the relative time of measurement and the measured value by the sensor

in microvolts.

The dataset itself is very fascinating. It raises the question: Does alcoholism

e�ect brain functionality and, if so, then is it visible in EEG? Before we use machine

learning to answer that let us take a look at the data, shown in �gures 5.2 and 5.3,

to get some intuition. Based on these images we can assume that there is indeed a

connection between alcoholism and brain functionality and that this can be observed

through EEG.

I think this dataset makes a good candidate for Federated Learning. Let's assume
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