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Abstract. Hyper-parameter tuning in use is one of the crucial steps
in the application of machine learning algorithms. In general, the tun-
ing process is modeled as an optimization problem for which several
methods have been proposed. For complex algorithms, the evaluation
of a hyper-parameter configuration is expensive and their runtime is
sped up through data sampling. In this paper, the effect of sample sizes
to the results of hyper-parameter tuning process is investigated. Hyper-
parameters of Support Vector Machines are tuned on samples of different
sizes generated from a dataset. Hausdorff distance is proposed for com-
puting the differences between the results of hyper-parameter tuning on
two samples of different size. 100 real-world datasets and two tuning
methods (Random Search and Particle Swarm Optimization) are used
in the experiments revealing some interesting relations between sample
sizes and results of hyper-parameter tuning which open some promising
directions for future investigation in this direction.
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1 Introduction

Hyper-parameter (HP) tuning of Machine Learning (ML) algorithms is a chal-
lenging task because of some practical difficulties: First, good hyper-parameter
(HP) settings depend on the dataset used, so the HP tuning should take into
account the algorithm-dataset combination. Second, the individual HP values
in good HP settings are often related to each other, thus, independent tuning
of individual HP values should be avoided. Finally, evaluating the fitness of a
specific HP setting can be computationally expensive, an issue on which this
paper is focused on.

The choice of the most adequate technique for HP tuning approach depends
on the complexity of the ML algorithm used w.r.t. the given data, i.e. if the
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evaluation of the HP setting for a ML algorithm has a low or high computational
cost. In other words, if many different HP settings can be easily evaluated or
HP have to be tuned from a small number of evaluations.

An alternative to speed up the runtime of ML algorithms is sampling [5],
when a reduced but representative sample of the data is used to induce a model,
instead of using the whole dataset. In addition to random sampling [13], there
are more sophisticated (stratified) sampling methods [9, 19] which can be used.

The motivation behind the research presented in this paper lies in the fol-
lowing question: In what extent does sampling of a dataset affect the results of
HP tuning? A preliminary research, an experiment, was conducted in order to
investigate the previous question. Experiments were conducted on 100 real-world
datasets and two tuning techniques for HP tuning pf Support Vector Machines
(SVM). For comparing the results of HP tuning on different sample sizes, the use
of the Hausdorff distance was proposed. Experiments reveal interesting relations
which serve as the basis for the further research in this direction.

2 Hyper-parameter Tuning

HP tuning is, in general, treated as an optimization problem whose objective
function f : A×D×H → R captures the predictive performance of an algorithm
a ∈ A with the HP setting h = (h1, h2, . . . , hk) ∈ H on the dataset D ∈ D where
A is the set of ML algorithms, D is the set of datasets andH = H1×H2×· · ·×Hk
is the space of admissible values of HP for the algorithm a. The task of HP tuning
is, given a, H and D, to find h? ∈ H such that

h? = arg max
h∈H

f(a,D,h) (1)

Several techniques for algorithm HP tuning have been proposed in the litera-
ture: The simplest techniques are the widely used Grid Search (GS) [3] in case of
low-dimensionalH and Random Search (RS) [10] for higher dimensionalH. Local
and pattern search techniques [14] extend the palette, however, these techniques
tend to get stuck in local minima. Another large family of HP tuning techniques
includes Sequential Model-Based Optimization (SMBO) techniques [8]. Nature
inspired techniques, like Genetic algorithms (GAs) [6] and Particle Swarm Opti-
mization (PSO) [12], have also been largely utilized for HP tuning. Recent works
focus on Bayesian techniques [16] and meta-learning [17].

SVM have been shown to be very efficient when used for classification tasks.
Consequently, several authors have proposed solutions for SVM HP tuning. All
previously mentioned techniques have been applied to SVM HP tuning , ini-
tialization of optimization methods with promising HP configuration values [12]
and recommendation of when optimization techniques should be used [11], have
been investigated.
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3 Experiment Settings

Classification experiments were carried out using SVM with the Radial Basis
Function (RBF) Kernel [7]. SVM with RBF kernel has two HP to tune, cost C
of SVM and width γ of the kernel. Given a dataset (or its sample), these HPs are
tuned using the average per-class accuracy measured over the folds of a 10-fold
cross-validation re-sampling strategy.

3.1 Experimental Methodology

The methodology adopted in the experiments, illustrated in Alg. 1, can be briefly
described as follows: a random sample of instances is extracted from each dataset.
For this sample, the best HP setting is found using a given HP tuning technique.
Iteratively, the sample is extended with instances randomly chosen from the so
far not sampled instances of the dataset. Iteration continues while the extended
sample does not contain all the instances from the dataset. Since the HP tuning
techniques used are stochastic, the whole process is repeated 30 times for each
dataset. The resulting set of the best found HP settings is further analyzed.

Algorithm 1 Experiment methodology

Require: K,D = {D1, . . . ,DN}, {p1, . . . , pn}, f, a,H, hpt
1: for k = 1→ K do
2: for i = 1→ N do
3: Dk

i ← ∅
4: Hk?

i ← ∅
5: for j = 1→ n do
6: S← sample pj% from Di (Dk

i ∩ S = ∅)
7: Dk

i ← Dk
i ∪ S

8: hk?
ij ← arg max

h∈H
f(a,Dk

i ,h) . using hpt

9: Hk?
i ← Hk?

i ∪ {hk?
ij }

10: return Hk?
i

3.2 Parameters used in the experiments

The parameters of the experiment methodology, described in Alg. 1, are the
following:

1. Datasets: 100 (multi-class) classification datasets from the UCI Machine
Learning Repository3. Their main characteristics, such as number of in-
stances (Inst.), number of attributes (Attr.) and number of classes (Class.),
are summarized in Tab. 1. Thus, D = {D1, . . . ,D100} and N=100.

3 http://archive.ics.uci.edu/ml/
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2. Sample sizes: The parameter n of Alg. 1 is set to 11, such that {p1, . . . , p11}
is equal to {50, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}. Thus, the initial sample size is 50% of
the size of the dataset and at each iteration 5% of all the remaining instances
in the dataset are added to the sample. Sample sizes are, thus, 50%, 55%, . . . ,
95%, 100%, respectively, of the original dataset. A simple random sampling
mechanism is utilized in experiments.

3. SVM HP-space: As previously mentioned, the chosen algorithm a is SVM
with RBF kernel. The fitness function f is a simple classification predictive
accuracy defined as the ratio of correctly classified instances to all instances
averaged over 10-folds of cross-validation. The HP-space is set toH = Hcost×
Hγ = [2−2, 215]× [2−15, 23] ⊂ R2.

4. HP-Tuning methods: Two HP tuning techniques (the parameter hpt of Alg. 1)
are used in the experiments:
– Exhaustive RS of the HP space H, suggested in [2] as a good alternative

for HP tuning with number of trials set to 2500.
– PSO4 [20]. The number of maximum evaluations was set to 2500. It

corresponds to a maximum of 100 iterations with a population composed
by 25 particles. The default HP values recommended by LibSVM [4] were
added to the initial population. The other PSO parameters are those
recommended by the package used for the experiments (see next).

Since both of techniques are stochastic, each HP tuning process was run 30
times, i.e. the parameter K=30.

All techniques were implemented using the R framework5. The e1071 pack-
age, which has an interface to the LibSVM6 library [4], was used for the SVM
implementation. For PSO, the pso package [1] was used. RS was implemented
by the authors.

4 Results and Discussion

Figure 1 shows the results for the ’analcatdata germangss’ and ‘artificial-characters’
datasets, in the first and second rows, respectively. In the columns from left to
right, the 30 best7 HP settings found for samples with 50%, 60%, 70%, 80%,
90% and 100%, respectively, of the original data, are presented.

The first finding is that, not only for the two illustrated dataset, but in
general, the results from HP tuning using RS are very similar to those using PSO.
This can be due to the relatively large number of evaluations in the experiment,
which can allow RS to cover a large portion of the HP space H, enough to find
good HP values.

4 Particle swarm optimization has been successfully used in partially irregular or noisy
optimization problems, and, often performs well, finding good solutions because it
does not make any assumption about the search landscape.

5 https://www.r-project.org/
6 https://www.csie.ntu.edu.tw/ cjlin/libsvm/
7 According to the parameter K of the Alg. 1 set to 30 in the experiment.
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Table 1. Classification datasets used in the experiments. Datasets with the maxi-
mum (analcatdata germangss) and minimum (artificial-characters) average distances
(dHmean) are highlighted.

Name dHRS dHPSO dHmean Name dHRS dHPSO dHmean

abalone-11class 3.53 4.09 3.81 ozone-eighthr 6.79 6.40 6.60
abalone-28class 3.30 3.34 3.32 ozone-onehr 3.48 4.84 4.16
abalone-3class 3.20 2.70 2.95 page-blocks 2.40 3.31 2.86
abalone-7class 3.43 4.03 3.73 parkinsons 4.87 4.31 4.59
acute-infl.-nephr. 3.90 2.87 3.38 pima-ind.-diab. 3.62 3.09 3.36
analcat. author. 3.72 6.96 5.34 planning-relax 6.20 6.86 6.53
analcat. boxing2 4.00 3.60 3.80 plant-sp.-leav.-marg. 7.68 6.95 7.31
analcat. credit. 3.38 3.52 3.45 plant-sp.-leav.-shape 4.40 2.89 3.65
analcat. dmft 4.05 4.08 4.06 plant-sp.-leav.-text. 2.44 3.47 2.96
analcat. germ, 12.49 13.24 12.87* prnn crabs 2.43 3.36 2.90
analcat. lawsuit 4.02 7.11 5.56 qsar-biodegr. 5.45 7.38 6.42
appendicitis 5.55 5.68 5.62 qualit.-bankruptcy 3.50 4.60 4.05
artif.-charact. 1.17 1.23 1.2** ringnorm 5.81 8.15 6.98
autoU.-au1-1000 9.78 5.49 7.63 robot-failure-lp4 3.84 6.80 5.32
autoU.-au4-2500 3.25 2.93 3.09 robot-failure-lp5 2.67 2.80 2.73
autoU.-au6-1000 5.64 5.56 5.60 saheart 2.93 2.57 2.75
autoU.-au6-250-dr. 3.57 5.92 4.75 seeds 6.52 5.92 6.22
autoU.-au6-cd1-400 1.95 3.08 2.52 seismic-bumps 10.34 10.24 10.29
banknote-auth. 2.84 3.80 3.32 spambase 2.08 2.31 2.20
breast-canc.-wisc. 4.13 4.22 4.17 spectf-heart 4.90 4.99 4.95
breast-tiss.-4class 4.22 4.99 4.61 spect-heart 4.53 4.00 4.27
breast-tiss.-6class 7.24 6.31 6.78 statlog-austr.-cr. 5.06 5.87 5.46
bupa 2.73 2.69 2.71 statlog-ger.-cr. 3.72 2.74 3.23
car-evaluation 1.79 2.02 1.9 statlog-ger.-cr.-num. 2.53 2.33 2.43
climate-sim.-crach. 6.84 4.13 5.48 statlog-heart 3.85 3.58 3.71
cloud 6.25 5.86 6.05 statlog-im.-segm. 2.10 2.34 2.22
cmc 2.61 2.33 2.47 statlog-land.-sat. 1.60 1.23 1.42
conn.-mines-vs-rocks 2.87 3.50 3.19 statlog-veh.-silh. 1.94 2.00 1.97
conn.-vowel 2.17 2.20 2.19 teaching-assist.-eval. 3.05 3.09 3.07
conn.-vowel-reduced 2.28 2.39 2.34 thoracic-surgery 6.11 12.21 9.16
contrac.-meth.-choice 2.17 2.00 2.08 thyroid-allhyper 4.62 2.88 3.75
dermatology 4.51 4.13 4.32 thyroid-allrep 2.24 2.34 2.29
ecoli 3.52 3.27 3.4 thyroid-ann 1.79 1.87 1.83
fertility-diagnosis 5.74 6.73 6.24 thyroid-dis 2.55 4.01 3.28
glass 2.69 3.32 3.00 thyroid-hypothyroid 2.76 3.71 3.23
habermans-survival 5.14 8.02 6.58 thyroid-newthyroid 4.64 5.18 4.91
hayes-roth 2.79 2.27 2.53 thyroid-sick 3.02 2.70 2.86
hepatitis 4.15 5.05 4.6 thyroid-sick-euthyr. 6.83 10.45 8.64
horse-colic-surgical 10.57 9.31 9.94 tic-tac-toe 6.93 5.3 6.12
indian-liver-patient 5.85 7.84 6.84 user-knowledge 2.47 2.43 2.45
ionosphere 8.49 6.78 7.63 voting 3.74 4.38 4.06
iris 3.30 4.08 3.69 wdbc 3.08 3.62 3.35
kr-vs-kp 2.11 4.69 3.4 wholesale-channel 3.44 3.78 3.61
leaf 3.22 2.66 2.94 wholesale-region 3.55 4.72 4.13
led7digit 4.60 4.00 4.30 wilt 2.74 2.90 2.82
leukemia-haslinger 4.40 3.62 4.01 wine 5.58 7.72 6.65
mammographic-mass 4.67 5.44 5.05 wine-quality-red 11.49 12.74 12.12
mfeat-fourier 4.30 4.63 4.46 wpbc 4.34 7.61 5.97
movement-libras 2.96 3.86 3.41 yeast 2.79 4.14 3.46
optdigits 4.54 6.04 5.29 yeast-4class 3.12 2.78 2.95



6 T. Horváth et al.
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Fig. 1. The 30 best HP configurations found by RS (orange triangles) and PSO (green
squares) for samples with 50%, 60%, 70%, 80%, 90% and 100% (1st, 2nd, 3rd, 4th, 5th
and 6th columns, respectively) of the analcatdata germangss (first row) and artificial-
characters (bottom row) datasets.

However, Fig. 1 shows two different situations: For the artificial-characters
dataset, the HP tuning results for different sample sizes are very similar, regard-
less whether RS or PSO was used (the six plots in the second row of charts). On
the other hand, for the analcatdata germangss data, the best HP configurations
found differ more for distinct sample sizes. Besides, the 30 HP settings found
are less dispersed across H for larger sample sizes. It means that tuning the C
and γ HPs is less sensitive to sampling in the artificial-characters dataset than
in the analcatdata germangss dataset.

4.1 Hausdorff Distance

One way to measure the difference in the HP tuning results for various sample
sizes is to use the Hausdorff distance [18], a commonly used dissimilarity measure
between two sets A and B of points, defined as

dH(A,B) = max{d(A,B), d(B,A)} (2)

where

d(A,B) = max
a∈A
{min
b∈B
{||a,b||}} (3)

and ||., .|| is any norm, e.g. the Euclidean distance. Two sets are close according
to the Eq. 2 if every point of either set is close to some point of the other set.

According to the Alg. 1, for a Di dataset and a fixed sample of size p1+· · ·+pj ,
such that 1 ≤ j ≤ n, there are K HP settings h1?

ij
,h2?

ij
, . . . ,hK?ij . Let A =

{h1?
ij
,h2?

ij
, . . . ,hK?ij } and B = {h1?

il
,h2?

il
, . . . ,hK?il }, where 1 ≤ j 6= l ≤ n, be

two sets of HP settings computed by a HP tuning technique for two samples
of different sizes sampled from the same dataset. Pairwise Hausdorff distances
between various sets A and B can be calculated.
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Table 2. Pairwise Hausdorff distances between HP tuning results for samples of dif-
ferent sizes averaged over all the datasets. Results for the RS and PSO HP tuning
techniques are shown above and below the diagonal, respectively.

Sample size 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

50% – 3.53 3.58 3.72 3.78 3.84 4.11 4.02 4.32 4.47 5.03
55% 4.01 – 3.68 3.64 3.62 3.83 4.01 4.01 4.27 4.58 4.95
60% 4.01 3.78 – 3.57 3.57 3.59 3.83 3.72 4.10 4.25 4.58
65% 4.24 3.82 3.78 – 3.52 3.57 3.88 3.75 3.75 4.27 4.46
70% 4.53 3.92 3.93 4.18 – 3.46 3.53 3.63 3.82 4.09 4.53
75% 4.24 4.14 3.88 4.01 4.00 – 3.66 3.57 3.62 4.01 4.07
80% 4.55 4.16 4.03 3.95 4.05 4.00 – 3.48 3.46 3.72 4.16
85% 4.54 4.36 4.00 4.01 3.88 3.86 3.72 – 3.49 3.69 3.80
90% 4.78 4.53 4.20 4.42 4.27 4.02 3.68 3.76 – 3.31 3.57
95% 5.27 4.94 4.60 4.72 4.52 4.24 3.94 3.84 3.58 – 3.27
100% 5.61 5.30 4.85 4.85 4.76 4.73 4.22 4.10 4.14 3.78 –

4.2 Pairwise Differences

The pairwise distances, averaged over all the datasets used in the experiment,
are shown in Tab. 2. Although the results are very similar for the two HP tuning
techniques evaluated, the RS results are less “distant” w.r.t. different sample
sizes than the PSO results. A possible reason is that PSO is a more sophisticated
optimization algorithm than RS and tends to narrow down the search space of
candidate solutions. Thus, if A and B are less dispersed, then there is a higher
chance that the overlap of the areas covered by these two sets is smaller.

4.3 Tuning based on Samples vs. the Whole Dataset

The distances between HP tuning results for samples of different size and the
whole dataset, averaged over the 30 runs and all the datasets, are illustrated
by bold in the last row and last column of Tab. 2. For both RS and PSO, the
differences between the results (HP settings) found for the whole dataset and
the results found for samples (abbreviated as average differences below) of size
60%, 65% and 70% are very similar. For RS in particular, average differences
in results are similar for the samples of size of 50% and 55% and for samples
of size 75% and 80%. Regarding PSO, similar average differences were recorded
for sample of sizes 80%, 85% and 90%. Besides that, average differences for the
samples of size 75% are similar to those of sizes 60%, 65% and 70%.

These results can support decisions about the size of samples to be used for
HP tuning. For example, using a sample size of 60% would probably lead to
similar results but in a shorter time as if the a sample size of 75% would be used
for tuning the HP with PSO.

Tab. 1 contains, for each dataset, the averaged Hausdorff distances between
the HP tuning results (averaged over the 30 runs) using the whole data and
samples of different size, for RS (denoted as dHRS) and PSO (denoted as dHPSO)
as well as their mean (denoted as dHmean). Datasets with the minimum and the
maximum values for dHmean are highlighted.
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4.4 Significant Differences Between Sample Sizes

Tab. 3 contains significant differences between HP tuning results for samples
which size differ in 5%, 10%, . . . , 45% and 50% of instances. The results were
computed as follows: For each dataset, Hausdorff distances between its samples
differing in 5%, 10%, . . . , 50%, respectively, were averaged (e.g. in case of 10%
difference, these are the distances between sample sizes of 50-60%, 60-70%, . . . ,
90-100%) resulting in ten 100-dimensional vectors. Wilcoxon test was applied to
each pair of these vectors.

The results indicate that there are no significant differences in the results of
HP tuning when the sample sizes differ in less than 25% or more than 35% of
the size of the whole dataset.

Table 3. Statistically significant differences according to Wilcoxon test between the
results of HP tuning for samples differing in 5%, . . . , 50% of instances w.r.t. the size
of the whole dataset. ◦ denote p-value ≤ 0.05 and • denote p-value ≤ 0.01. Results for
RS and PSO are above and below the diagonal, respectively.

Difference in sample sizes 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

5% – • • • • •
10% – ◦ ◦ • • •
15% – ◦ ◦ • •
20% – ◦ •
25% – ◦ •
30% • ◦ –
35% ◦ ◦ –
40% • • • ◦ –
45% • • • • • ◦ –
50% • • • • • ◦ –

dimen < 0.0197

kurt < 2.89

inst >= 1392

attEntr < 1.62

canCor >= 0.63

attr < 12

canCor >= 0.612

inst < 3077

dimen >= 0.0176

num < 8.5

nClEntr >= 0.996

canCor < 0.967

clEntr >= 1.1

noiSigR >= 23.2

nAttEntr < 0.163

prMinCl < 0.0629

prMinCl >= 0.0356

num >= 5

nAttEntr < 0.249

inst >= 998

0

0

0

0 1

0 1 0 1

1 0

0 1

1 0

0 1

1

0 1

1

yes no inst >= 844

prMinCl >= 0.00969

classes >= 2.5

jEntr < 2

kurt < 2.98

classes >= 9

skewness >= 0.954

skewness < 2.62

attr >= 49

inst < 99.5

minLevel >= 4.5

inst >= 338

classes < 5.5

dimen < 0.0199

dimen >= 0.0176

num < 8.5

0

0 1

1 0

0 1

1

1 0

0

0 1

0 1

1

1

yes no

Fig. 2. Decision trees induced from dataset characteristics for a target variable dHRS

(left) and dHPSO (right) from the Tab. 1. Leaves labeled with 1 mean that dHRS > 3 or
dHPSO > 3, respectively, otherwise the leaves are labeled with 0.

4.5 Data Characteristics vs. Sensitivity of HP-Tuning on Sampling

In order to reveal relations between the sensitivity of HP tuning on sampling
from a dataset and some characteristics of the dataset, a decision tree was in-
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duced using the rpart package of R. As explanatory measures, some simple [12],
statistical [17] and information-theoretic [15] measures were extracted from each
dataset. These measures, known as meta-features, are well explored in meta-
learning research [11]. A dataset was created where each dataset is represented
by predictive attributes, a.k.a. the meta-features, and a target attribute. The
target attribute can assume the values from dHRS or dHPSO, from Tab. 1, de-
pending if the HP tuning for the dataset used RS or PSO, respectively. The
continuous target values (dHRS or dHPSO) were transformed to binary values, as
follows: values larger than 3 were encoded as 1 (True), otherwise as 0 (False),
indicating that HP tuning on the given dataset is sensitive or not, respectively,
to sampling. The resulting trees, illustrated in Fig. 2 were not pruned, in order
to reveal all meta-features considered relevant to the classification.

For RS, the tree contains the following characteristics: dimensionality of the
dataset (dimen), average kurtosis of continuous attributes (kurt), normalized
class entropy (nClEnt), number of instances (inst), canonical correlation be-
tween attributes and labels (canCor), normalized attribute entropy (nAttEntr),
attribute entropy (attEntr), class entropy (clEntr), probability of the minority
class (prMinCl), noise-to-signal ratio computed from the average attribute en-
tropy and the mutual information in the data (noiSigR), number of attributes
(attr) and number of numeric attributes (num). Regrading PSO, the tree presents
the following measures: number of classes (classes), minimum number of levels
of nominal attributes (minLevel), joint entropy (jEntr), skewness and the inst,
prMinCl, dimen, kurt, attr and num, measures introduced above.

In both cases, the number of attributes and the number of instances in the
dataset were among the most important measures determining the sensitivity of
HP tuning regarding the sampling.

5 Conclusions and Future Work

This paper investigated the effect of random sampling on SVM HP tuning. For
such, several experiments were performed, where various samples were generated
for 100 datasets using PSO and RS HP tuning techniques. The main goal of this
study was to investigate how the size of the sample affects the HP tuning results,
when compared with the results obtained for the whole dataset.

The presented research8 is in its early stages and need to be further pursued
but the experimental results obtained indicate some future research directions,
which include: to investigate the use of the Hausdorff distance for HP tuning in
data stream mining , where new instances arrive continuously, investigate how
the results would be affected by the use of other HP tuning techniques [14,16] or
some stratified sampling techniques [9]. To the best of the authors’ knowledge,
this research is the first to investigate the effects of sampling on the HP tuning
process, is relevant for ML and worth further research.

8 Supported by the Brazilian Funding Agencies CAPES, CNPq and São Paulo
Research Foundation FAPESP (CeMEAI-FAPESP process 13/07375-0 and grant
#2012/23114-9), and the Slovakian project VEGA 1/0475/14.
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19. Yves Tillé. Sampling Algorithms. Springer, 2006.
20. Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, and Mehmet

Karamanoglu. Swarm Intelligence and Bio-Inspired Computation: Theory and Ap-
plications. Elsevier, 2013.


